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PREFACE 
 
 
This report describes a complex computer model, SUTRA, for analysis of fluid flow and solute 
or energy transport in subsurface systems. SUTRA is an upgrade of the 1984 SUTRA computer 
code (Voss, 1984) adding the capability for three-dimensional simulation to the former code, 
which allowed only two-dimensional simulation. The user is cautioned that although the model 
will accurately reproduce the physics of flow and transport when used with proper discretization, 
it will give meaningful results only for well-posed problems based on sufficient supporting data. 
 
The user is kindly requested to notify the originating office of any errors found in this report or 
in the computer program. Please report these by mail to:  
 
SUTRA Support 
U.S. Geological Survey 
431 National Center 
Reston, VA 20192 
USA 
 
Updates will occasionally be made to the report and the computer program to include corrections 
of errors, addition of processes that may be simulated, and changes in numerical algorithms. The 
version date of this report is given on the title page. 
 
Copies of the computer program and manual for SUTRA and associated utility codes for 
preprocessing and postprocessing are available free of charge from a U.S. Geological Survey 
Web site: 
 
http://water.usgs.gov/nrp/gwsoftware/sutra.html 
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Abstract 
 
SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid 
movement and the transport of either energy or dissolved substances in a subsurface 
environment. This upgraded version of SUTRA adds the capability for three-dimensional 
simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. 
The code employs a two- or three-dimensional finite-element and finite-difference method to 
approximate the governing equations that describe the two interdependent processes that are 
simulated: 

1) fluid density-dependent saturated or unsaturated ground-water flow; and 
2) either 

(a) transport of a solute in the ground water, in which the solute may be subject to: 
equilibrium adsorption on the porous matrix, and both first-order and zero-order 
production or decay; or 
(b) transport of thermal energy in the ground water and solid matrix of the aquifer. 
 

SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-
dependent dispersion process for anisotropic media is also provided by the code and is 
introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and 
either solute concentrations or temperatures, as they vary with time, everywhere in the simulated 
subsurface system. 
 
SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and 
three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional 
and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be 
employed to model natural or man-induced chemical-species transport including processes of 
solute sorption, production, and decay. For example, it may be applied to analyze ground-water 
contaminant transport problems and aquifer restoration designs. In addition, solute-transport 
simulation with SUTRA may be used for modeling of variable-density leachate movement, and 
for cross sectional modeling of saltwater intrusion in aquifers at near-well or regional scales, 
with either dispersed or relatively sharp transition zones between freshwater and saltwater. 
SUTRA energy-transport simulation may be employed to model thermal regimes in aquifers, 
subsurface heat conduction, aquifer thermal-energy storage systems, geothermal reservoirs, 
thermal pollution of aquifers, and natural hydrogeologic convection systems. 
 
Mesh construction, which is quite flexible for arbitrary geometries, employs quadrilateral finite 
elements in 2D Cartesian or radial-cylindrical coordinate systems, and hexahedral finite elements 
in 3D systems. 3D meshes are currently restricted to be logically rectangular; in other words, 
they are similar to deformable finite-difference-style grids. Permeabilities may be anisotropic 
and may vary in both direction and magnitude throughout the system, as may most other aquifer 
and fluid properties. Boundary conditions, sources and sinks may be time dependent. A number 
of input data checks are made to verify the input data set. An option is available for storing 
intermediate results and restarting a simulation at the intermediate time. Output options include 
fluid velocities, fluid mass and solute mass or energy budgets, and time-varying observations at 
points in the system. Both the mathematical basis for SUTRA and the program structure are 
highly general, and are modularized to allow for straightforward addition of new methods or 
processes to the simulation. The FORTRAN-90 coding stresses clarity and modularity rather 
than efficiency, providing easy access for later modifications. 
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INTRODUCTION 
 

 





 

Chapter 1: Introduction 
 
1.1 Purpose and Scope 
 
SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid 
movement and the transport of either energy or dissolved substances in a subsurface 
environment. This upgraded version of SUTRA adds the capability for three-dimensional (3D) 
simulation to the former code (Voss, 1984), which allowed only two-dimensional (2D) 
simulation. The code employs a 2D or 3D finite-element and finite-difference method to 
approximate the governing equations that describe the two interdependent processes that are 
simulated: 

1) Fluid-density-dependent saturated or unsaturated ground-water flow; and either 
2) (a) transport of a solute in the ground water, in which the solute may be subject to: 

equilibrium adsorption on the porous matrix, and both first-order and zero-order 
production or decay; or 
(b) transport of thermal energy in the ground water and solid matrix of the aquifer. 

SUTRA provides, as the primary calculated result, fluid pressures and either solute 
concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface 
system. SUTRA may also be used to simulate simpler subsets of the above process. 
 
This report describes the physical-mathematical basis and the numerical methodology of the 
SUTRA computer code. The report can be divided into four groups, which may be read 
depending on the reader’s background and interest.  

The overview of simulation with SUTRA and methods may be obtained from 
Chapter 1—Introduction. 

The basics, at a fundamental level, for a reader who will carry out simulations with 
SUTRA, may be obtained by additional reading of 

Chapter 2—Physical-Mathematical Basis of SUTRA Simulation, which gives a 
complete and detailed description of processes that SUTRA simulates and 
describes each physical parameter required by SUTRA input data; 
Chapter 3—Fundamentals of Numerical Algorithms, which gives an introduction 
to the numerical aspects of simulation with SUTRA; 
Chapter 6—Simulation Examples; and  
Chapter 7—Simulation Setup.  

The complete details of SUTRA methodology are given in the following additional 
sections:  

Chapter 4—Numerical Methods; and  
Chapter 5—Other Methods and Algorithms.  

Chapter 4 provides the detail upon which program modifications may be based, and 
portions of Chapter 5 are valuable background for certain simulation applications. 

Additional details are contained in the appendices: 
Appendix A—List of Symbols; and 
Appendix B— SUTRA Input Data List. 

Appendix A contains a complete listing of all nomenclature and symbols used in this 
report. Appendix B describes in detail the SUTRA input datasets. 
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1.2 The Model 
 
SUTRA is based on a general physical, mathematical and numerical structure implemented in the 
computer code in a modular design. This allows straightforward modifications and additions to 
the code. Eventual modifications may be, for example, the addition of nonequilibrium sorption 
(such as two-site models), equilibrium chemical reactions or chemical kinetics, or addition of 
over- and underburden heat-loss functions, a wellbore model, or confining bed leakage. 
 
The SUTRA model stresses general applicability, numerical robustness and accuracy, and clarity 
in coding. Computational efficiency is somewhat diminished to preserve these qualities. The 
modular structure of SUTRA, however, allows implementation of any eventual changes that may 
improve efficiency. Such modifications may be in the configuration of the matrix equations, in 
the solution procedure for these equations, or in the finite-element integration routines. 
Furthermore, the general nature and flexibility of the input data allows easy adaptability to user-
friendly and graphical input-output programming. The modular structure would also ease major 
changes such as modifications for simultaneous energy and solute-transport simulations. 
 
1.3 SUTRA Processes 
 
Simulation using SUTRA is in two or three spatial dimensions. A pseudo-3D quality is provided 
for 2D, in that the thickness of the 2D region in the third direction may vary from point to point. 
A 2D simulation may be done either in the areal plane or in a cross sectional view. The 2D 
spatial coordinate system may be either Cartesian (x,y) or radial-cylindrical (r,z). Areal 
simulation is usually physically unrealistic for variable-density fluid and for unsaturated flow 
problems. The 3D spatial coordinate system is Cartesian (x,y,z). 
 
Ground-water flow is simulated through numerical solution of a fluid mass-balance equation. 
The ground-water system may be either saturated, or partly or completely unsaturated. Fluid 
density may be constant, or vary as a function of solute concentration or fluid temperature. 
 
SUTRA tracks the transport of either solute mass or energy in flowing ground water through a 
unified equation, which represents the transport of either solute or energy. Solute transport is 
simulated through numerical solution of a solute mass-balance equation where solute 
concentration may affect fluid density. The single solute species may be transported 
conservatively, or it may undergo equilibrium sorption (through linear, Freundlich, or Langmuir 
isotherms). In addition, the solute may be produced or decay through first- or zero-order 
processes. Energy transport is simulated through numerical solution of an energy-balance 
equation. The solid grains of the aquifer matrix and fluid are locally assumed to have equal 
temperature, and fluid density and viscosity may be affected by the temperature. 
 
Most aquifer material, flow, and transport parameters may vary in value throughout the 
simulated region. Sources and boundary conditions of fluid, solute and energy may be specified 
to vary with time or may be constant. 
 
SUTRA dispersion processes include diffusion and two types of fluid velocity-dependent 
dispersion. The standard dispersion model for isotropic media assumes direction-independent 
values of longitudinal and transverse dispersivity. A flow-direction-dependent dispersion process 
for anisotropic media is also provided and is introduced in this report. This process assumes that 
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longitudinal and transverse dispersivities vary depending on the orientation of the flow direction 
relative to the principal axes of aquifer permeability. 
 
1.4 Some SUTRA Applications 
 
SUTRA may be employed in one-, two-, or three-dimensional analyses. Flow and transport 
simulation may be either steady state, which requires only a single solution step, or transient, 
which requires a series of time steps in the numerical solution. Single-step steady-state solutions 
are usually not appropriate for nonlinear problems with variable density, saturation, viscosity or 
nonlinear sorption. 
 
SUTRA flow simulation may be employed for 2D areal, cross sectional, and fully 3D modeling 
of saturated ground-water flow systems and unsaturated-zone flow. Hydraulic aquifer tests may 
be analyzed using flow simulation. SUTRA solute-transport simulation may be employed to 
model natural or man-induced chemical-species transport including processes of solute sorption, 
production and decay. Such simulation may be used to analyze ground-water contaminant-
transport problems and aquifer restoration designs. SUTRA solute-transport simulation may also 
be used for modeling of variable-density leachate movement, and for cross sectional modeling of 
seawater intrusion and other saline-water migration in aquifers at near-well or regional scales 
with either dispersed or relatively sharp transition zones between freshwater and saltwater. 
SUTRA energy-transport simulation may be employed to model thermal regimes in aquifers, 
subsurface heat conduction, aquifer thermal-energy storage systems, geothermal reservoirs, 
thermal pollution of aquifers, and natural hydrogeologic convection systems. A review of 
published SUTRA applications is given in Voss (1999). 
 
1.5 SUTRA Numerical Methods 
 
SUTRA simulation is based on a hybridization of finite-element and integrated-finite-difference 
methods employed in the framework of a method of weighted residuals. The method is robust 
and accurate when employed with proper spatial and temporal discretization. Standard finite-
element approximations are employed only for terms in the balance equations that describe 
fluxes of fluid mass, solute mass, and energy. All other nonflux terms are approximated with a 
finite-element mesh version of the integrated-finite-difference methods. The hybrid method is the 
simplest and most economical approach that preserves the mathematical elegance and geometric 
flexibility of finite-element simulation, while taking advantage of finite-difference efficiency. 
 
SUTRA employs a special finite-element method for calculation of fluid velocities in variable 
density fluids. Fluid velocities, when calculated with standard finite-element methods for 
systems with variable fluid density, may display spurious numerically generated components 
within each element. These errors are due to fundamental numerical inconsistencies in spatial 
and temporal approximations for the pressure gradient and density-gravity terms, which are 
involved in velocity calculation. Spurious velocities can significantly add to the dispersion of 
solute or energy. This false dispersion makes accurate simulation of all systems impossible, 
except those with very low vertical concentration or temperature gradients, even when fine 
vertical spatial discretization is employed. Velocities as calculated in SUTRA, however, are 
based on a consistent spatial and temporal discretization, which is described in this report and by 
Voss and Souza (1987). The consistently evaluated velocities allow stable and accurate transport 
simulation (even at steady state) for systems with large vertical gradients of concentration or 
temperature. An example of such a system that SUTRA successfully simulates is a cross 
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sectional regional model of a coastal aquifer wherein the transition zone between horizontally 
flowing freshwater and deep stagnant saltwater is relatively narrow (Voss and Souza, 1987). 
 
The time discretization used in SUTRA is based on a backwards finite-difference approximation 
for the time derivatives in the balance equations. Some nonlinear coefficients are evaluated at the 
new time level of solution by projection, and others are evaluated at the previous time level for 
noniterative solutions. All coefficients are evaluated at the new time level for iterative solutions. 
 
The finite-element method used in SUTRA allows the simulation of irregular regions with 
irregular internal discretization in 2D and regular (logically rectangular) internal discretization in 
3D. This is made possible through use of quadrilateral elements with four corner nodes in 2D 
and hexahedral elements with eight corner nodes in 3D. Coefficients and properties of the system 
may vary in value throughout the mesh. Manual construction and data preparation for 2D and 3D 
meshes requires considerable labor; instead, preprocessing software such as the text-based 
program SutraPrep (Provost, 2002) and the interactive graphical user interface SutraGUI 
(Winston and Voss, 2002) should be used for this purpose. 
 
SUTRA includes an optional numerical method, based on asymmetric finite-element weighting 
functions, that results in “upstream weighting” of advective transport and unsaturated fluid flux 
terms. Although upstream weighting has been employed to achieve stable, non-oscillatory 
solutions to transport problems and unsaturated flow problems, the method is not recommended 
for general use as it merely changes the physical system being simulated by increasing the 
magnitude of the dispersion process. A practical use of the method is, however, to provide a 
simulation of the sharpest concentration or temperature variations possible with a given mesh. 
This is obtained by specifying a simulation with no physical diffusion or dispersion, and with 
50% upstream weighting. The results may be interpreted as the solution with the minimum 
amount of dispersion possible for a stable result in the particular mesh in use. In general 
simulation analyses of transport, upstream weighting is discouraged. The normal non-upstream 
methods provided by SUTRA are based on symmetric weighting functions. These methods are 
robust and accurate when the finite-element mesh is properly designed for a particular 
simulation, and should be used for most transport simulations. 
 
1.6 SUTRA as an Analytical Tool 
 
SUTRA will provide clear, accurate answers only to well-posed, well-defined, and well-
discretized simulation problems. In less well-defined systems, SUTRA simulation can help 
visualize a conceptual model of the flow and transport regime, and can aid in deciding between 
various conceptual models. In such less well-defined systems, simulation can help answer 
questions such as: Is an inaccessible aquifer boundary, which is ten kilometers offshore either 
leaky or impermeable? How leaky? Does this boundary affect the primary analysis of onshore 
water supply? This mode of modeling is called ‘hypothesis testing.’ 
 
SUTRA is not useful for making exact predictions of future responses of typical hydrologic 
systems that are not well defined. Rather, SUTRA is useful for hypothesis testing and for helping 
to understand the physics of such a system. On the other hand, developing an understanding of a 
system based on simulation analysis can help make a set of worthwhile predictions that are 
predicated on uncertainty of both the physical model design and model parameter values. In 
particular, transport simulation that relies on large amounts of dispersion must be considered an 
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uncertain basis for prediction because of the idealized mathematical assumptions inherent in the 
SUTRA dispersion process. 
 
Because a simulation-based prediction made with certainty is often inappropriate, an “if-then” 
prediction may be more realistic. A reasonable type of result of SUTRA simulation analysis may 
thus be: “Based on the uncertainty in location and type of boundary condition A, and uncertainty 
in the distribution of values for parameters B and C, the following predictions are made. The 
extreme, but reasonable combination of A, B, and C results in prediction X; the opposite 
reasonable extreme combination of A, B, and C results in prediction Y; the combination of best 
estimates of A, B, and C results in prediction Z, and is considered most likely.” 
 
In some cases, the available real data on a system may be so poor that a simulation using 
SUTRA is so ambiguously defined that no prediction at all can be made. In this instance, the 
simulation may be used to point out the need for particular types of data collection. The model 
could be used to advantage in visualizing possible regimes of system behavior rather than to 
determine which is accurate. 
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Chapter 2: Physical-Mathematical Basis of SUTRA Simulation 
 
The physical mechanisms that drive thermal energy transport and solute transport in the 
subsurface environment are described by nearly identical mathematical expressions. SUTRA 
takes advantage of this similarity, and with a simple program structure provides for simulation of 
either energy or solute transport. In fact, SUTRA simulation combines two physical models, one 
to simulate the flow of ground water, and the second to simulate the movement of either thermal 
energy or a single solute in the ground water. 
 

Note: All symbols are defined in Appendix A – List of Symbols. 
 
The primary variable upon which the flow model is based is fluid pressure, p [M/(L s2)] = 
p(x,y[,z],t). The latter expression means for 2D, p(x,y,t), and for 3D, p(x,y,z,t). Pressure may 
vary spatially in the ground-water system, as well as with time. Pressure is expressed as a 
combination of fluid mass units, [M], length units, [L], and time units in seconds, [s]. Fluid 
density may vary depending on the local value of fluid temperature or solute concentration. 
Variation in fluid density, aside from fluid pressure differences, may itself drive flows. The 
effects of gravity acting on fluids with different density must therefore be accounted for in the 
flow field. 
 
The flow of ground water, in turn, is a fundamental mechanism upon which the physical models 
of energy transport and solute transport are based. The primary variable characterizing the 
thermal energy distribution in a ground-water system is fluid temperature, T [°C] = T(x,y[,z],t), 
in degrees Celsius, which may vary spatially and with time. The primary variable characterizing 
the state of solute distribution in a ground-water system is solute mass fraction, C[Ms/M] = 
C(x,y[,z],t), which may also vary spatially and with time. The units are a ratio of solute mass, 
[Ms] to fluid mass, [M]. The term “solute mass fraction” may be used interchangeably with 
“solute concentration”, and no difference should be implied. Note that “solute volumetric 
concentration”, c[Ms/Lf

3], (mass of solute, Ms, per volume of fluid, Lf
3), is not the primary 

variable characterizing solute transport referred to either in this report or in output from the 
SUTRA model. Note that the measure of solute mass [Ms] may be in units such as [mg], [kg], or 
[lbm], and may differ from the measure, [M], of fluid mass. 
 
SUTRA allows only the transport of either thermal energy or a single solute to be modeled in a 
given simulation. Thus, when simulating energy transport, a constant value of solute 
concentration is assumed in the ground water. When simulating solute transport, a constant 
ground-water temperature is assumed. 
 
When SUTRA simulation is carried out in two space dimensions, parameters vary only in these 
two directions (x,y). However, the region of space to be simulated may be defined as 3D, when 
the assumption is made that all SUTRA parameters and coefficients have a constant value in the 
third space direction. A SUTRA simulation may be carried out over a region defined over two 
space coordinates (x,y) in which the thickness of the region measured in the third coordinate 
direction (z) varies depending on (x,y) position. 
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2.1 Physical Properties of Solid Matrix and Fluid 
 
Fluid physical properties 
 
The ground-water fluid density and viscosity may vary depending on pressure, temperature and 
solute concentration. These fundamental variables are defined as follows: 
 
 p(x,y[,z],t) [M/(L s2)] fluid pressure 
 
 T(x,y[,z],t) [ºC] fluid temperature (degrees Celsius) 
 
 C(x,y[,z],t) [Ms/M] fluid solute mass fraction (or solute 

concentration) (mass solute per mass 
total fluid) 

  
As a point of reference, “solute volumetric concentration” is defined in terms of fluid density, ρ: 
 

 c(x,y[,z],t) [Ms/ ]  solute volumetric concentration 
(mass solute per volume total fluid) 

3
fL

 
 ρ(x,y[,z],t) [M/ L ]  fluid density 3

f
 

      (2.1) C  c ρ=
 
 c     (2.2)   ρ  ρ w +=

 
Total fluid density is the sum of pure water density, ρw, and c. Note again that “solute 
concentration” refers to solute mass fraction, C, and not c. Fluid density, is a weak function of 
pressure and depends primarily upon fluid solute concentration and temperature. The 
approximate density models employed by SUTRA are first order Taylor expansions (in either T 
or C) about a base (reference) density, but other density models may be substituted through 
minor modifications to the program. For energy transport: 
 

 ( oo TT
T
ρρ  ρ(T) ρ −

∂
∂

+≅= )   (2.3) 

 
 ρo [M/ L ] base fluid density at T=T3

f o 
 
 To [°C] base fluid temperature 
 
where ρo is the base fluid density at a base (reference) temperature of To, and ∂ρ/∂T is a constant 
value of density change with temperature. For the range 20°C to 60°C, ∂ρ/∂T is approximately    
-0.375 [kg/(m3 °C)]; however, this factor varies and should be carefully chosen for the 
temperature range of interest. 
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For solute transport: 
 

 ( oo CC
C
ρρ  ρ(C) ρ −

∂
∂

+≅= )   (2.4) 

 

 ρo [M/ ] base fluid density at C=C3
fL o 

 
 Co [Ms/M] base fluid solute concentration 
 
where ρo is the base fluid density at base concentration, Co. (Usually, Co = 0, and the base 
density is that of pure water.) The factor ∂ρ/∂C is a constant value of density change with 
concentration. For example, for mixtures of freshwater and seawater at 20°C, when C is the mass 
fraction of total dissolved solids, Co = 0, and ρo = 998.2 [kg/m3], then the factor, ∂ρ/∂C, is 
approximately 700. [kg/m3]. 
 
Fluid viscosity, µ [M/Lf s], is a weak function of pressure and of concentration (for all except 
very high concentrations), and depends primarily on fluid temperature. For energy transport the 
viscosity of pure water is given in m-k-s units by: 
 

 [ s)kg/(m       10 )10  (239.4  µ(T) 133.15T
248.37

7- ⋅×≅








+ ] (2.5) 
 
(The units may be converted to those desired via a scale factor in the program’s input data.) 
For solute transport, viscosity is taken to be constant. For example, at 20°C in m-k-s units, 
 
 )]⋅×=°= s[kg/(m10  1.0  µ(C) -3

C20 T     (2.6) 
 
 
Properties of fluid within the solid matrix 
 
The total volume of a porous medium is composed of a matrix of solid grains typically of solid 
earth materials, and of void space, which includes the entire remaining volume that the solid 
does not fill. The volume of void space may be fully or partly filled with gas or liquid, and is 
commonly referred to as the pore volume. Porosity is defined as a volume of voids in the soil 
matrix per total volume of voids plus matrix: 
 
 ε(x,y[,z],t) [1] porosity (volume of voids per total volume) 
 
where [1] indicates a dimensionless quantity. 
 
It should be noted that SUTRA employs only one type of porosity, ε. In some instances there 
may be need to distinguish between a porosity for pores which take part in fluid flow (effective 
porosity) and pores which contain both stagnant and flowing fluid (total porosity). 
(Modifications may be made by the user to include this process.) 
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The fraction of total volume filled by the fluid is εSw where: 
 
 Sw(x,y[,z],t) [1] water saturation (saturation) 
    (volume of water per volume of voids) 
 
When Sw = 1, the void space is completely filled with fluid and is said to be saturated. When 
Sw < 1, the void space is only partly water filled and is referred to as being unsaturated. 
 
When Sw < 1, water adheres to the surface of solid grains by surface tension effects, and the fluid 
pressure is less than atmospheric. Fluid pressure, p, is measured with respect to background or 
atmospheric pressure. The negative pressure is defined as capillary pressure, which exists only 
for p < 0: 
 
 pc(x,y[,z],t) [M/(L s2)] capillary pressure 
 
   pc = –p when p < 0 
 
   pc = 0 when p ≥_   0   (2.7) 
 
In a saturated porous medium, as fluid (gauge) pressure drops below zero, air may not directly 
enter the void space, but may enter suddenly when a critical capillary pressure is reached. This 
pressure, pcent, is the entry pressure (or bubble pressure): 
 
 pcent  [M/(L s2)]  entry capillary pressure 
 
Typical values for pcent range from about 1.0 x 103 [kg/(m s2)] for coarse sand to approximately 
5.0 x 103 [kg/(m s2)] for fine silty sand. 
 
The relation between fluid saturation and capillary pressure in a given medium is typically 
determined by laboratory experiment, and except for the portion near bubble pressure, tends to 
have an exponential character (Figure 2.1). Different functional relations exist for different 
materials as measured in the laboratory. In addition, a number of general functions with 
parameters to be fitted to laboratory data are available. Because of the variety of possible 
functions, no particular function is set by SUTRA; any desired function may be specified for 
simulation of unsaturated flow. For example, a general function with three fitting parameters is 
(Van Genuchten, 1980): 
 

  ( )
( )







 −










+
−+= n

1n

n
c

wreswresw  
ap1
1 S1S S  (2.8) 

 
where Swres is a residual saturation below which saturation is not expected to fall (because the 
fluid becomes immobile), and both a and n are parameters. The values of these parameters 
depend upon a number of factors and these must be carefully chosen for a particular material. 
 
The total mass of fluid contained in a total volume, VOL, of solid matrix plus pore space is 
(εSwρ)VOL. The actual amount of total fluid mass contained depends solely on fluid pressure, p, 
and solute concentration, C, or fluid temperature, T. A change in total fluid mass in a volume, 
assuming VOL is constant, is expressed as follows: 
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where U represents either C or T. Saturation, Sw, is entirely dependent on fluid pressure, and 
porosity, ε, does not depend on concentration or temperature: 
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The factor, ∂Sw/∂p, is obtained by differentiation of the chosen saturation-capillary pressure 
relation. For the example function given as (2.8), 
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Figure 2.l. Saturation-capillary pressure relation (schematic). Sw is saturation, Swres is residual 
saturation, and pcent is air entry pressure (bubble pressure). 
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The factor, ∂ρ/∂U, is a constant value defined by the assumed density models, given by 
equations (2.3) and (2.4). 
 
Aquifer storativity under fully saturated conditions is related to the factor, ∂(ερ)/∂p, by 
definition, as follows (Bear, 1979): 
 

 opρS  
p

)ερ(
≡

∂
∂    (2.12) 

 
where: 
 

 







∆

∆
≡

p
VOL

VOL
1S w

op   (2.13) 

 
 Sop(x,y) [M/(L s2)]–1 specific pressure storativity 
 
The specific pressure storativity, Sop, is the volume of water released from saturated pore storage 
due to a unit drop in fluid pressure per total solid matrix plus pore volume. Note that the 
common specific storativity, So [L–1], which when multiplied by confined aquifer thickness gives 
the well known storage coefficient, S[1], is related to Sop as, opo Sgρ=S , where g [L/s2] is the 
magnitude of the gravitational acceleration vector. The common specific storativity, So, is 
analogous to the specific pressure storativity, Sop, used in SUTRA, except that So expresses the 
volume of water released from pore storage due to a unit drop in hydraulic head. 
 
SUTRA employs an expanded form of the specific pressure storativity based on fluid and bulk 
porous matrix compressibilities. The relation is obtained as follows by expanding equation 
(2.12): 
 

 
p
ρε  

p
ερS ρ op ∂

∂
+

∂
∂

≡    (2.14) 

 
The coefficient of compressibility of water is defined by 
 

 
p
ρ   

ρ
1β

∂
∂

≡    (2.15) 

 
 β [Μ/(L s2)]–1 fluid compressibility 
 
which allows the last term of (2.14) to be replaced by ερβ.  
 
For pure water at 20°C, β ~ 4.47 x 10–10 [kg/(m s2)]–1. As the volume of solid grains, VOLs, in a 
volume, VOL, of porous solid matrix plus void space is VOLs = (1–ε) VOL, the factor, ∂ε/∂p, 
may be expressed as: 
 

 
p

(VOL)    
VOL

ε)(1
p
ε

∂
∂−

≡
∂
∂   (2.16) 
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which assumes that individual solid grains are relatively incompressible. The total stress at any 
point in the solid matrix-fluid system is the sum of effective (intergranular) stress, σ' [M/(L s2)], 
and fluid pore pressure, p, in systems where the total stress remains nearly constant, dσ' = –dp, 
and any drop in fluid pressure increases intergranular stress by a like amount. This consideration 
allows (2.16) to be expressed in terms of bulk porous matrix compressibility, as:  
∂ε/∂p = (1–ε)α, where 
 

 
σ'

(VOL)    
VOL

1 -  α
∂

∂
≡   (2.17) 

 
α [Μ/(L s2)]–1 porous matrix compressibility 

 
 σ' [Μ/(L s2)] intergranular stress 
 
Factor α ranges from α ~ 10–10 [kg/(m s2)]–1 for sound bedrock to about α ~ 10–7 [kg/(m s2)]–1 
for clay (Freeze and Cherry, 1979). Thus equation (2.14) may be rewritten as  
ρSop = ρ(1–ε)α + ερβ, and, in effect, the specific pressure storativity, Sop, is expanded as: 
 
    (2.18) εβ  ε)α-(1 Sop +=
 
The porosity value itself is held constant for SUTRA, despite relation (2.16), although this may 
cause small errors in some cases (Goode, 1992). A more thorough discussion of storativity is 
presented by Bear (1979). 
 
 
2.2 Saturated-Unsaturated Ground-Water Flow 
 
Fluid flow and flow properties 
  
Fluid movement in porous media where fluid density varies spatially may be driven by 
differences either in fluid pressure or by unstable variations in fluid density. Pressure-driven 
flows, for example, are directed from regions of higher than hydrostatic fluid pressure toward 
regions of lower than hydrostatic pressure. Density-driven flows occur when gravity forces act 
on denser regions of fluid causing them to flow downward relative to fluid regions that are less 
dense. A stable density configuration drives no flow, and is one in which fluid density remains 
constant or increases with depth. 
 
The mechanisms of pressure and density driving forces for flow are expressed for SUTRA 
simulation by a general form of Darcy’s law, which is commonly used to describe flow in porous 
media: 
 

 ( gρp    
µεS

kk
 v

w

r −∇⋅







−= )   (2.19a) 
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where: 
 
 v (x,y[,z],t) [L/s] average fluid velocity 
 
 k

=
   (x,y[,z]) [L2] solid matrix permeability (in 2D, a 2 x 2 

matrix of values; in 3D, a 3 x 3 matrix of 
values) 

 
 kr (x,y[,z],t) [1] relative permeability to fluid flow 

(assumed to be independent of direction) 
 
 g  [L/s2] gravitational acceleration (gravity vector) 
 
The gravity vector is defined in relation to the direction in which vertical elevation is measured: 
 
 g  = – g  ∇(ELEVATION)  (2.19b) 
 
where g  is the magnitude of the gravitational acceleration vector. For example, if the y-space-

coordinate is oriented directly upwards, then ∇(ELEVATION) is a vector of values (for x, y and 
z directions, respectively): (0,1,0), and g = (0, – g ,0). If for example, ‘directly upwards’ is 

within in the x-y plane at a 60° angle to the x-axis, then ∇ (ELEVATION) = ((1/2), (3½/2), 0) 
and g  =  (–(1/2) g , –(3½/2) g , 0). The z-component is ignored for 2D analysis. 
 
The average fluid velocity, v, is the velocity of fluid with respect to the stationary solid matrix. 
The velocity is referred to as an “average”, because true velocities in a porous medium vary from 
point to point due to variations in the permeability and porosity of the medium at a spatial scale 
smaller than that at which measurements are made. The so-called Darcy velocity, q, for the sake 
of reference, is q = εSwv. This value is always less than the true average fluid velocity, v, and 
thus, not being a true indicator of the speed of water movement. “Darcy velocity”, q, is actually a 
‘flux’ of fluid, representing the volume of fluid crossing an area of porous medium per time.  
 
Fluid velocity, even for a given pressure and density distribution, may take on different values 
depending on how mobile the fluid is within the solid matrix. Fluid mobility depends on the 
combination of permeability, k , relative permeability, kr, and viscosity, µ, which occurs in 
equation (2.19a). Permeability is a measure of the ease of fluid movement through 
interconnected voids in the solid matrix when all voids are completely saturated. Relative 
permeability expresses what fraction of the total permeability remains when the voids are only 
partly fluid-filled and only part of the total interconnected void space is connected by continuous 
fluid channels. Viscosity directly expresses ease of fluid flow; a less viscous fluid flows more 
readily under a driving force. 
 
As a point of reference, in order to relate the general form of Darcy’s law, (2.19a), back to a 
better known form dependent on hydraulic head, the dependence of flow on density and 
saturation must be ignored. When the solid matrix is fully saturated, Sw = 1, the relative 
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permeability to flow is unity kr = 1. When, in addition, fluid density is constant, the right side of 
(2.19a) expanded by (2.19b) may be multiplied and divided by ρ g : 
 

 













∇+
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εµ

gρk
v   (2.20a) 

 
The hydraulic conductivity, K

=
   (x,y[,z],t) [L/s], may be identified in this equation as 

K =( k ρ g )/µ; pressure head, hp(x,y[,z],t) [L], is hp = p/(ρ g ). Hydraulic head, h(x,y[,z],t) [L], is 
defined as h = hp + ELEVATION. Thus, for constant density, saturated flow, 
 

 h    
ε
K

 - v ∇⋅







=      (2.20b) 

 
which is Darcy’s law written in terms of the hydraulic head. Even in this basic form of Darcy’s 
law, flow may depend on solute concentration and temperature. The hydraulic conductivity, 
through viscosity, is highly dependent on temperature, and measurably, but considerably less on 
concentration. In cases where density or viscosity is not constant, therefore, hydraulic 
conductivity, K , is not a fundamental parameter describing ease of flow through the solid matrix. 
Permeability, k , is, in most situations, essentially independent of pressure, temperature and 
concentration and therefore is the appropriate fundamental parameter describing ease of flow in 
the SUTRA model. 
 
Permeability, k , describes ease of fluid flow in a saturated solid matrix. When permeability in a 
particular small volume of solid matrix depends on the direction of the flow, the permeability is 
said to be anisotropic. Direction-independent permeability is called isotropic. It is commonly 
assumed that permeability is the same for flow forward or backward along a particular line in 
space. When permeability is anisotropic, there is always one particular direction, xmax, along 
which permeability has a maximum value, kmax [L2], and another direction, xmin, along which 
permeability has a minimum value, kmin [L2]. These two principal directions are mutually 
perpendicular.  In 3D, there exists a third principal direction, xmid, which is perpendicular to the 
first two, and in which the permeability has an intermediate, or “middle,” value, kmid [L2]. 
 
The permeability tensor, k , of Darcy’s law, equation (2.19), has four components in 2D and nine 
components in 3D. The values of these tensorial components depend on the effective 
permeabilities in the x, y, and z coordinate directions, which are not necessarily aligned with the 
principal directions of permeability. The required coordinate rotations are carried out 
automatically by SUTRA according to the method described in section 5.1, “Rotation of 
Permeability Tensor.” 
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 (a) 

 
 (b) 
 

Figure 2.2. Definition of anisotropic permeability and effective permeability, k, in (a) 2D and (b) 3D. In 
2D, xmax and xmin are the directions of maximum and minimum permeability, kmax and kmin, and θ is 
the angle of the maximum permeability direction from the x-axis. In 3D, xmid is an additional direction 
that corresponds to a middle permeability, kmid. (For the sake of visual clarity, the 3D diagram omits 
the (x, y, z)-coordinate axes and the angles that relate coordinate systems.) 
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At any given point in space, an anisotropic permeability field in 2D is completely described by 
the permeability ellipse shown in Figure 2.2a, in which 
 
 kmax(x,y) [L2] absolute maximum value of permeability 
 
 kmin(x,y) [L2] absolute minimum value of permeability 
 
 θ(x,y) [°] angle from +x-coordinate axis to direction of 

maximum permeability, xmax 
 
The lengths of the semi-major and semi-minor axes of the ellipse are defined as  and  

respectively, and the length of any radius is k

1/2
maxk 1/2

mink ,
½, where k is the effective permeability for flow 

along that direction. The angle θ orients the principal directions, xmax, and xmin, to the x and y 
coordinate directions. In the case of isotropic permeability, kmax = kmin, and θ is arbitrary. 
 
In 3D, an anisotropic permeability field is completely described by the permeability ellipsoid 
shown in Figure 2.2b, in which 
 
 kmax(x,y,z) [L2] maximum value of permeability 
 
 kmid(x,y,z) [L2] middle value of permeability 
 
 kmin(x,y,z) [L2] minimum value of permeability 
 
 θ1(x,y) [°] angle from +x-coordinate axis to direction of 

maximum permeability, measured within the 
x,y-plane 

 
 θ2(x,y) [°] angle upward from the x,y-plane to the 

direction of maximum permeability 
 
 θ3(x,y) [°] angle from the x,y-plane to the direction of 

middle permeability, measured as a 
counterclockwise rotation about the axis of 
maximum permeability (looking down the 
positive half of this axis toward the origin) 

The lengths of the principal semi-axes of the ellipsoid are defined as  , and , and 

the length of any radius is k

1/2
maxk , 1/2

midk 1/2
mink

½, where k is the effective permeability for flow along that direction. 
The angles θ1, θ2, and θ3 orient the principal directions, xmax, xmid, and xmin, to the x, y, and z 
coordinate directions. In the case of isotropic permeability, kmax = kmid = kmin, and θ1, θ2, and θ3 
are arbitrary. 
 
The discussion of isotropic and anisotropic permeability, k , applies as well to flow in an 
unsaturated solid matrix, Sw < 1, although unsaturated flow has additional unique properties 
which require definition. When fluid capillary pressure, pc, is less than entry capillary pressure, 
pcent, the void space is saturated Sw = 1, and local porous medium flow properties are not 
pressure-dependent but depend only on void space geometry and connectivity. When pc > pcent, 
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then air or another gas has entered the matrix and the void space is only partly fluid filled, 
Sw < 1. In this case, the ease with which fluid can pass through the solid matrix depends on the 
remaining cross section of well-connected fluid channels through the matrix, as well as on 
surface tension forces at fluid-gas, and fluid-solid interfaces. When saturation is so small such 
that no interconnected fluid channels exist and residual fluid is scattered about and tightly bound 
in the smallest void spaces by surface tension, flow ceases entirely. The relative permeability to 
flow, kr, which is a measure of this behavior, varies from a value of zero or near zero at the 
residual fluid saturation, Swres, to a value of one at saturation, Sw = 1. A relative permeability-
saturation relation (Figure 2.3) is typically determined for a particular solid matrix material in the 
laboratory as is the relation, Sw(pc). Relative permeability is assumed in SUTRA to be 
independent of direction in the porous media.  
 
SUTRA allows any desired function to be specified which gives the relative permeability in 
terms of saturation or pressure. A general function, for example, based on the saturation-capillary 
pressure relation given as an example in (2.8), is (Van Genuchten, 1980): 
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where the a dimensionless saturation, S  is given by: *
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Flow in the gaseous phase that fills the remaining void space not containing fluid when Sw < 1 is 
assumed not to contribute significantly to total solute or energy transport which is due primarily 
to fluid flow and other transport processes through both fluid and solid matrix. Furthermore, it is 
assumed that pressure differences within the gas do not drive significant fluid flow. These 
assumptions are justified in most common situations when gas pressure is approximately 
constant throughout the solid matrix system. Should gas pressure vary appreciably in a field 
system, simulation with SUTRA, which is by definition a single phase flow and transport model, 
must be critically evaluated against the possible necessity of employing a multiphase fluid flow 
and transport model. 
 
Fluid mass balance 
The so-called “flow simulation” provided by SUTRA is in actuality a calculation of how the 
amount of fluid mass contained within the void spaces of the solid matrix changes with time. In a 
particular volume of solid matrix and void space, the total fluid mass (εSwρ) VOL, may change 
with time due to ambient ground-water inflows or outflows; injection or withdrawal wells; 
changes in fluid density caused by changing temperature or concentration; or changes in 
saturation. SUTRA flow simulation is, in fact, a fluid mass balance which keeps track of the 
fluid mass contained at every point in the simulated ground-water system as it changes with time 
due to flows, wells, and saturation or density changes. 
 
The fluid mass balance is expressed as the sum of pure water and pure solute mass balances for a 
solid matrix in which there is negligible net movement (i.e., no subsidence and no compaction): 
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where: 
 
 Qp(x,y[,z],t) [M/(L3 s)] fluid mass source (including pure water mass 

plus solute mass dissolved in source water) 
 
 ϒ (x,y[,z],t) [M/(L3 s)] solute mass source (e.g., dissolution of solid 

matrix or desorption) 
 
 
 
 

 
Figure 2.3. Relative permeability-saturation relation (schematic). kr is the relative permeability. 
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The term on the left may be recognized as the total change in fluid mass contained in the void 
space with time. The term involving ∇ represents contributions to local fluid mass change due to  
excess of fluid inflows over outflows at a point. The fluid mass source term, Qp, accounts for 
external additions of fluid including pure water mass plus the mass of any solute dissolved in the 
source fluid. The pure solute mass source term, ϒ, may account for external additions of pure 
solute mass not associated with a fluid source. In most cases, this contribution to the total mass is 
small compared to the total pure water mass contributed by fluid sources, Qp. Pure solute 
sources, ϒ, are therefore neglected in the fluid mass balance, but may be readily included in 
SUTRA for special situations. Note that solute mass sources are not neglected in the solute mass 
balance, which is discussed in section 2.4. 
 
While (2.22) is the most fundamental form of the fluid mass balance, it is necessary to express 
each mechanism represented by a term of the equation, in terms of the primary variables, p, C, 
and T. As SUTRA allows variation in only one of C or T at a time, the letter U is employed to 
represent either of these quantities. The development from equation (2.9) to (2.18) allows the 
time derivative in (2.22) to be expanded: 
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While the concepts upon which specific pressure storativity, Sop, is based, do not exactly hold for 
unsaturated media, the error introduced by summing the storativity term with the term involving 
( S∂ w/ p) is insignificant as ( S∂ ∂ w/ p) >>> S∂ op. 
 
The exact form of the fluid mass balance as implemented in SUTRA is obtained from (2.22) by 
neglecting ϒ, substituting (2.23) and employing Darcy’s law, (2.19), for v: 
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2.3 Energy Transport in Ground Water 
 
Subsurface energy-transport mechanisms 
 
Energy is transported in the water-solid matrix system by flow of ground water, and by thermal 
conduction from higher to lower temperatures through both the fluid and solid. The actual flow 
velocities of the ground water from point to point in the 3D space of an aquifer may vary 
considerably about an average velocity, v(x, y[, z], t), calculated from Darcy’s law (2.19a). As 
the true, not average, velocity field is usually too complex to measure in real systems, an 
additional transport mechanism approximating the effects of mixing of different temperature 
ground waters moving both faster and slower than the average velocity, v, is hypothesized. This 
mechanism, called energy dispersion, is employed in SUTRA as the best currently available, 
though approximate, description of the mixing process. In the simple dispersion model 
employed, dispersion, in effect, adds to the thermal conductivity value of the fluid-solid medium 
in particular directions dependent upon the direction of fluid flow. In other words, mixing due to 
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the existence of nonuniform, non-average velocities in three dimensions about the average flow, 
v, is conceptualized as a diffusion-like process with anisotropic diffusivities. 
 
The model has been shown, in fact, to well describe transport in purely homogeneous porous 
media with uniform one-dimensional flows. In heterogeneous field situations with nonuniform 
flow in, for example, irregular bedding or fractures, the model holds only at the predetermined 
scale at which dispersivities have been determined and it must currently be considered as a 
necessary approximation, and be very carefully applied when extrapolating to other scales of 
transport. 
 
Solid matrix-fluid energy balance 
The simulation of energy transport provided by SUTRA is actually a calculation of the time rate 
of change of the amount of energy stored in the solid matrix and fluid. In any particular volume 
of solid matrix plus fluid, the amount of energy contained is [εSwρew + (1–ε)ρses] VOL, where: 
 
 ew [E/M] energy per unit mass water 
 
 es [E/MG] energy per unit mass solid matrix 
 
 ρs [MG/ ] density of solid grain in solid matrix 3

GL
 
and where [E] are energy units [M L2/s2]. 
 
The stored energy in a volume may change with time due to: ambient water with a different 
temperature flowing in, well water of a different temperature injected, changes in the total mass 
of water in the block, thermal conduction (energy diffusion) into or out of the volume, energy 
dispersion in or out, and energy production or loss due to nuclear, chemical or biological 
reactions. 
 
This balance of changes in stored energy with various energy fluxes is expressed as follows: 
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 (2.25) 

 
 λ(x,y[,z],t) [E/(s L °C)] bulk thermal conductivity of solid matrix plus 

fluid 
 
 I [1] identity tensor (ones on diagonal, zeroes 

elsewhere) (in 2D, a 2 x 2 matrix of values; 
   in 3D, a 3 x 3 matrix of values) 
 
 cw [E/(M °C)] specific heat of water 

(cw~4.182 x 103[J/(kg °C)] at 20°C) 
 
 D

=
   (x,y[,z],t) [L2/s] dispersion tensor (in 2D, a 2 x 2 matrix of values; 

 in 3D, a 3 x 3 matrix of values) 
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 T*(x,y[,z],t) [°C] temperature of source fluid 
 
 (x,y[,z],t) [E/(M s)] energy source in fluid w

oγ
 
 (x,y[,z],t) [E/(Ms

oγ G s)] energy source in solid grains 
 
The time derivative expresses the total change in energy stored in both the solid matrix and fluid 
per unit total volume. The term involving v expresses contributions to locally stored energy from 
average-uniform flowing fluid (average energy advection). The term involving bulk thermal 
conductivity, λ, expresses heat conduction contributions to local stored energy and the term 
involving the dispersivity tensor, D , approximately expresses the contribution of irregular flows 
and mixing, which are not accounted for by average energy advection. The term involving Qp 
accounts for the energy added by a fluid source with temperature, T*. The last terms account for 
energy production in the fluid and solid, respectively, due to endothermic reactions, for example. 
 
While models that are more complex are available and may be implemented if desired, SUTRA 
employs a volumetric average approximation for bulk thermal conductivity, λ: 
 
  ( ) sww 1S λε−+λε≡λ   (2.26) 
 
 λw [E/(s L °C)] fluid thermal conductivity 

(λw ~ 0.6 [J/(s m °C)] at 20°C) 
 
 λs [E/(s L °C)] solid thermal conductivity 

(λw ~ 3.5 [J/(s m °C)] at 20°C, for sandstone) 
 
The specific energy content (per unit mass) of the fluid and the solid matrix depends on 
temperature as follows: 
 
     (2.27a) T

T

ce ww =
 
     (2.27b) ce ss =
 
 cs [E/(MG °C)] solid grain specific heat  

(cs ~ 8.4 x 102[J/(kg °C)]  
for sandstone at 20°C) 

 
An expanded form of the solid matrix-fluid energy balance is obtained by substitution of 
(2.27a, b) and (2.26) into (2.25). This yields: 
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2.4 Solute Transport in Ground Water 
 
Subsurface solute-transport mechanisms 
 
Solute mass is transported through the porous medium by flow of ground water (solute 
advection) and by molecular or ionic diffusion, which while small on a field scale, carries solute 
mass from areas of high to low concentrations. The actual flow velocities of the ground water 
from point to point in 3D space of an aquifer may vary considerably about an average velocity, 
v, which is calculated from Darcy’s law (2.19a). As the true, not-average, velocity field is 
usually too complex to measure in real systems, an additional transport mechanism 
approximating the effects of mixing of waters with different concentrations moving both faster 
and slower than the average velocity, v(x,y[,z],t), is hypothesized. This mechanism, called solute 
dispersion, is employed in SUTRA as the best currently available, though approximate, 
description of the mixing process. In the simple dispersion model employed, dispersion, in 
effect, significantly adds to the molecular diffusivity value of the fluid in particular directions 
dependent upon the direction of fluid flow. In other words, mixing due to the existence of 
nonuniform, non-average velocities in three dimensions about the average flow, v, is 
conceptualized as a diffusion-like process with anisotropic diffusivities. 
 
The model has been shown, in fact, to describe transport well in purely homogeneous porous 
media with uniform one-dimensional flows. In heterogeneous field situations with nonuniform 
flows in, for example, irregular bedding or fractures, the model holds only at the predetermined 
scale at which dispersivities have been determined and it must be considered as a currently 
necessary approximation, and be very carefully applied when extrapolating to other scales of 
transport. 
 
Solute and adsorbate mass balances 
 
SUTRA solute-transport simulation accounts for a single species mass stored in fluid solution as 
well as solute and species mass stored as adsorbate on the surfaces of solid matrix grains. Solute 
concentration, C, and adsorbate concentration, Cs(x,y[,z],t) [Ms/MG], (where [Ms] denotes units 
of solute mass, and [MG] denotes units of solid grain mass), are related through equilibrium 
adsorption isotherms. The species mass stored in solution in a particular volume of solid matrix 
may change with time due to: ambient water with a different concentration flowing in, well water 
injected with a different concentration, changes in the total fluid mass in the block, solute 
diffusion or dispersion in or out of the volume, transfer of dissolved species to adsorbed species 
(or reverse), or a chemical or biological reaction causing solute production or decay. The species 
mass stored as adsorbate on the surface of solid grains in a particular block of solid matrix may 
change with time due to a gain of adsorbed species by transfer of solute from the fluid (or 
reverse), or a chemical or biological reaction causing adsorbate production or decay. 
 
The separate balances for a single species stored in solution (solute) and on the solid grains 
(adsorbate), are expressed, respectively, as follows: 
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 f(x,y[,z],t) [Ms/(L

3 s)] volumetric adsorbate source (gain of absorbed 
species by transfer from fluid per unit total 
volume) 

 
 Dm [L2/s] apparent molecular diffusivity of solute in 

solution in a porous medium including 
tortuosity effects, (Dm~1. x 10–9 [m2/s]  

   for NaCl at 20.°C) 
 
 I

=   
 [1] identity tensor (ones on diagonal, zero 

elsewhere) 
   (in 2D, a 2 x 2 matrix of values; 
    in 3D, a 3 x 3 matrix of values) 
 
 D (x,y[,z],t) [L2/s] dispersion tensor 
   (in 2D, a 2 x 2 matrix of values; 
     in 3D, a 3 x 3 matrix of values) 
 
 Γw(x,y[,z],t) [Ms/M s] solute mass source in fluid (per unit fluid 

mass) due to production reactions 
 
 C*(x,y[,z],t) [Ms/M] solute concentration of fluid sources (mass 

fraction) 
 
 Cs(x,y[,z],t) [Ms/MG] specific concentration of adsorbate on solid 

grains (mass adsorbate/(mass solid grains plus 
adsorbate)) 

 
 ρs [MG/ ] density of solid grains in solid matrix 3

GL
 
 Γs(x,y[,z],t) [Ms/MG s] adsorbate mass source (per unit solid matrix 

mass) due to production reactions within 
adsorbed material itself. 

 
where [ ] is the volume of solid grains. 3

GL
 
Equation (2.29) is the solute mass balance in terms of the dissolved mass fraction (solute 
concentration), C. The time derivative expresses the total changes in solute mass with time in a 
volume due to the mechanisms represented by terms on the right side of the equation. The term 
involving f(x,y[,z],t) represents the loss of solute mass from solution which becomes fixed on the 
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solid grain surfaces as adsorbate. The adsorbate source, f, may, in general, depend on solute 
concentration, C, adsorbate concentration, Cs, and the rate of change of these concentrations, 
depending on either an equilibrium adsorption isotherm or on nonequilibrium adsorption 
processes. SUTRA algorithms are structured to directly accept nonequilibrium sorption models 
as an addition to the code. However, the current version of SUTRA assumes equilibrium sorption 
as shown in the following section, “Adsorption and production/decay processes.” 
 
The term involving fluid velocity, v, represents average advection of solute mass into or out of 
the local volume. The term involving molecular diffusivity of solute, Dm, and dispersivity, D , 
expresses the contribution of solute diffusion and dispersion to the local changes in solute mass. 
The diffusion contribution is based on a true physical process often negligible at the field scale. 
The dispersion contribution approximates the effect of solute advection and mixing in irregular 
flows, which are not accounted for by solute advected by the average velocity. The solute mass 
source term involving Γw(x,y[,z],t), the solute mass production rate per unit mass of fluid, 
expresses the contribution to dissolved species mass of chemical, biological or radioactive 
reactions in the fluid. The last term accounts for dissolved species mass added by a fluid source 
with concentration, C*. 
 
Equation (2.30) is the balance of mass, which has been adsorbed by solid grain surfaces in terms 
of species concentration on the solid (specific adsorbate concentration), Cs. The change in total 
adsorbate mass is expressed by the time derivative term. It may increase due to species leaving 
solution as expressed by adsorbate source term, f. The adsorbed mass may also change due to a 
production of adsorbate mass (per unit solid matrix mass), Γs by radioactive or chemical 
processes within the adsorbate. Note that mass becomes immobile once adsorbed, and is affected 
only by possible desorption or chemical and biological processes. 
 
The total mass of a species in a volume is given by the sum of solute mass and adsorbate mass. A 
balance of the total mass of a species is obtained by addition of (2.30) and (2.29). The general 
form of the total species mass balance used in SUTRA is this: 
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 (2.31) 

 
Equation (2.31) is the basis for SUTRA solute-transport simulation. In cases of solute transport 
where adsorption does not occur (Cs = 0), the adsorbate source term, f, simply has the value zero 
(f = 0), and the terms that stem from equation (2.30) are ignored. Further discussion of solute and 
adsorbate mass balances may be found in Bear (1979). 
 
Adsorption and production/decay processes 
The volumetric adsorbate source, f, of (2.29) and (2.30) may be expressed in terms of a specific 
sorption rate, fs, as: 
 
  f    (2.32a) ( ) ssf1 ρε−=
 
 fs(x,y[,z],t) [Ms/MG s] specific solute mass adsorption rate 

(per unit mass solid matrix) 
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A particular nonequilibrium (kinetic) model of sorption is obtained by defining the functional 
dependence of the sorption rate, fs, on other parameters of the system. For example, for a linear 
reversible nonequilibrium sorption model, the expression is:  fs = m1(C – m2Cs), where m1 and 
m2 are sorption parameters. This particular model and a number of other nonequilibrium sorption 
models are accommodated by a general expression for fs, as follows: 
 

  321s C
t
C

κ+κ+f
∂
∂

κ≡   (2.32b) 

 
where:             κ1 = κ1(C,Cs), κ2 = κ2(C,Cs), κ3 = κ3(C,Cs). 
 
 κ1(C,Cs) [M/MG] first general sorption coefficient 
 
 κ2(C,Cs) [M/MG s] second general sorption coefficient 
 
 κ3(C,Cs) [Ms/MG s] third general sorption coefficient 
 
Through a suitable definition of the general coefficients, κi(C,Cs), a number of nonequilibrium 
sorption models may be obtained. For example, the linear reversible nonequilibrium model 
mentioned above requires the definitions: κ1 ≡ 0, κ2 ≡ m1, and κ3 ≡ –mlm2Cs. The general 
coefficients κ1, κ2, and κ3 are included in the SUTRA code (as CS1, CS2 and CS3, in Subroutine 
ADSORB) to provide generality for possible inclusion of such nonequilibrium (kinetic) sorption 
models. 
 
The equilibrium sorption models are based on definition of the general coefficients through the 
following relation: 
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Only general sorption coefficient κ1 need be defined based on various equilibrium sorption 
isotherms as shown in the following. The other coefficients are set to zero: κ2 = κ3 = 0. 
 
The linear equilibrium sorption model is based on the linear sorption isotherm assuming constant 
fluid density: 
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where: 
 
  [ L /M1χ 3

f G] linear distribution coefficient 
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and ρo is the fluid base density. For linear sorption, general coefficient κ1 takes on the definition: 
 
    (2.34c) o11 ρχ=κ
 
The Freundlich equilibrium sorption model is based on the following isotherm, which assumes a 
constant fluid density, ρo: 
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  (2.35b) 

 
where: 
 
 χ1 [ L /M3

f G] a Freundlich distribution coefficient 
 
 χ2 [1] Freundlich coefficient 
 
(When χ2 = 1, the Freundlich isotherm is equivalent to the linear isotherm.) For Freundlich 
sorption, then, the general coefficient κ1 takes the definition: 
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  (2.35c) 

 
The Langmuir equilibrium sorption model is based on the following isotherm, which assumes a 
constant fluid density, ρo: 
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where: 
 
 χ1 [ L /M3

f G] a Langmuir distribution coefficient 
 
 χ2 [ /M3

fL s] Langmuir coefficient 
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For very low solute concentrations, C, Langmuir sorption becomes linear sorption with linear 
distribution coefficient χ1. For very high solute concentrations, C, the concentration of adsorbate 
mass, Cs, approaches an upper limit equal to (χ1/χ2). The general SUTRA coefficient κ1 is 
defined for Langmuir sorption as:  
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=κ    (2.36c) 

 
The production terms for solute, Γw, and adsorbate, Γs, allow for first-order mass production (or 
decay) such as linear BOD (biochemical oxygen demand) or radioactive decay, biological or 
chemical production, and zero-order mass production (or decay). 
 
   (2.37a) w

o
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1w C γ+γ=Γ  
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where: 
 
  [sw

1γ –1] first order mass production rate of solute 
 
  [(Mw

oγ s/M)/s] zero-order solute mass production rate 
 
  [ss

1γ –1] first-order mass production rate of adsorbate 
 
  [(Ms

oγ s/MG)/s] zero-order adsorbate mass production rate 
 
 
 
2.5 Dispersion 
 
Pseudotransport mechanism 
 
Dispersion is a pseudo-transport process representing mixing of fluids that actually travel 
through the solid matrix at velocities different from the average velocity in two or three spatial 
dimensions, v, calculated from Darcy’s law (2.19). Dispersion is a pseudoflux in that it only 
represents deviations from an average advective flux of energy or solute mass and as such does 
not represent a true mechanism of transport. Should it be possible to represent the true, complex, 
nonhomogeneous velocity field in, for example, the layers of an irregularly bedded field system, 
then the dispersion process need not be invoked to describe the transport, as the local variations 
in advection would provide the true picture of the transport taking place. However, as available 
data almost never allow for such a detailed velocity description, an approximate description must 
be employed, which helps to account for observed temperatures or concentrations different from 
that expected based on the average fluid advection. 
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Research trends have been to develop dispersion models for various hydrogeological conditions, 
and SUTRA may be updated to include new results as they become available. Currently (2002), 
SUTRA dispersion is based on a generalization for anisotropic media of the standard description 
for dispersion in isotropic, homogeneous porous media. Because any inconsistencies that may 
arise in applying this dispersion model to a particular field situation often would not be apparent 
due to the poor quality or small amount of measured data, the user is warned to exercise good 
judgment in interpreting results when large amounts of so-called dispersion are required to 
explain the field measurements. In any case, the user is advised to consult up-to-date literature on 
field-scale dispersion before employing this transport model. 
 
Isotropic-media dispersion model 
 
The dispersion tensor, D , which appears in both the energy (2.28) and solute (2.31) balances, is 
usually expressed for flow in systems with isotropic permeability and isotropic spatial 
distribution of inhomogeneities in aquifer materials in 2D as 
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and in 3D as 
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where, in both, D  is symmetric (i.e., Dxy=Dyx, Dxz=Dzx, and Dzy=Dyz). 
In 2D, the diagonal elements are 
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and the off-diagonal elements are 
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 i ≠ j,  i=x,y 
  j=x,y 
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In 3D, the diagonal elements are 
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and the off-diagonal elements are 
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= )  (2.39g) 

 i ≠ j, i=x,y,z 
  j=x,y,z 
 
The variables that determine the elements of the dispersion tensor are defined as follows: 
 
 v(x,y[,z],t) [L/s] magnitude of velocity v 
 
 vx(x,y[,z],t) [L/s] magnitude of x-component v 
 
 vy(x,y[,z],t) [L/s] magnitude of y-component v 
 
 vz(x,y,z,t) [L/s] magnitude of z-component v 
 
 dL(x,y[,z],t) [L2/s] longitudinal dispersion coefficient 
 
 dT(x,y[,z],t) [L2/s] transverse dispersion coefficient 
 
The longitudinal and transverse dispersion coefficients, dL and dT [L2/s], are analogous to typical 
diffusion coefficients. What is special is that these are directional in nature. The quantity dL acts 
as a diffusion coefficient that causes dispersion forward and backward along the local direction 
of fluid flow. The quantity dT acts as a diffusion coefficient that causes dispersion symmetrically 
in the directions perpendicular to the local flow direction, and is called the transverse dispersion 
coefficient. Thus, in 3D, if dL and dT were of equal value, a spherical mass of tracer released in 
ground water flowing, on the average, uniformly and unidirectionally would disperse in a 
perfectly symmetric spherical manner as it moved downstream. Similarly, in 2D, a circular disk 
of tracer would disperse in a perfectly symmetric circular manner as it moved downstream. 
However, if dL > dT then the tracer would disperse in an ellipsoidal (3D) or elliptical (2D) 
manner, with the long axis oriented in the flow direction as it moved downstream. 
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The sizes of the dispersion coefficients in this model for dispersion in isotropic permeability 
systems are dependent upon the absolute local magnitude of average velocity in a flowing system 
(Bear, 1979): 
 
  dL = αLv   (2.40a) 
 
  dT = αTv   (2.40b) 
 
 αL(x,y[,z]) [L] longitudinal dispersivity of solid matrix 
 
 αT(x,y[,z]) [L] transverse dispersivity of solid matrix 
 
When the isotropic-media dispersion model is applied to a particular field situation where aquifer 
inhomogeneities are much smaller than the field transport scale, then dispersivities αL and αT 
may be considered to be fundamental transport properties of the system just as, for example, 
permeability is a fundamental property for flow through porous media. In cases where 
inhomogeneities are large or scales of transport vary, dispersivities are not a fundamental system 
property. In this case, simulated dispersion effects must be interpreted with care, because 
dispersivity values are the only means available to represent the dispersive characteristics of a 
given system to be simulated when using the SUTRA code. 
 
Anisotropic-media dispersion model – overview 
 
In a system with anisotropic spatial distribution of heterogeneities in aquifer materials, the same 
amount of dispersion may not occur for flow in all directions, even when the magnitude of flow 
velocity, v, is the same. For example, in a layered aquifer, the amount of dispersion would not 
necessarily be the same for flow parallel to the layers and flow perpendicular to the layers.  
 
The isotropic-media dispersion model, described in the previous section, does not account for 
this possibility, and its basic parameters, αL and αT, are independent of flow direction. A model 
for anisotropic media is hypothesized that provides key aspects of expected dispersion behavior. 
Although the hypothesized model described below is neither completely general nor rigorous, it 
provides a practical means of describing dispersion in anisotropic media. 
 
Dispersive spreading is assumed to occur along a set of mutually perpendicular directions (one of 
which is the flow direction) in a symmetric manner (i.e., equal amounts in opposite directions 
along each direction), just as in the isotropic case. Following the discussion in the previous 
section referring to equations (2.40a) and (2.40b), but in a 2D anisotropic medium, a circular 
disk of tracer would become elliptical, with the longest axis in the flow direction, as it moved 
downstream, if  αL > αT. However, it may not spread the same way if it moved with the same 
speed, v, in a different direction. For example, if  αL = αT (equal amounts of longitudinal and 
transverse dispersion) for one flow direction, but αL > αT (greater longitudinal than transverse 
dispersion) for all other flow directions, then the tracer would spread in a circular manner if the 
flow occurred in the direction where αL = αT, but would spread as an ellipse for flow in any 
other direction. In such a case, the values of both αL and αT would depend on the direction of 
flow. Such a medium is considered anisotropic with respect to dispersion.   
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 (a) 
 

Figure 2.4a. Definition of flow-direction-dependent longitudinal dispersivity, αL(θkv), in 2D. The upper 
figure is described in Figure 2.2a. In the lower figure, αLmax and αLmin are the longitudinal dispersivity 
for flow in the maximum and minimum directions, respectively. θkv is the angle from the maximum 
permeability direction to the flow direction and αL is the longitudinal dispersivity in that flow direction. 
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(b) 

 
(c) 

 
Figure 2.4b,c. Definition of flow-direction-dependent (b) longitudinal dispersivity, αL(θkv1, θkv2), and (c) 
transverse dispersivities, αT1(θkv1, θkv2) and αT2(θkv1, θkv2), in 3D. (For the sake of visual clarity, the 
(x,y,z)-coordinate axes are not shown, and the angles θkv1 and θkv2 are not labelled.) As in Figure 
2.2b, xmax, xmid, and xmin are the principal directions of permeability. In the lower figure, the slicing 
ellipse that defines the transverse dispersivities lies in the plane that is perpendicular to the flow 
direction, v, and that passes through the center of the ellipsoid. The two transverse dispersivities and 
their directions are given by the radii along the major and minor axes of the slicing ellipse. 
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In a 3D anisotropic medium, different amounts of transverse dispersion may occur in two 
mutually perpendicular directions (the transverse directions), which are both perpendicular to the 
flow direction. If the transverse dispersivities for each of these tranverse directions, αT1 and αT2, 
are not equal to each other or to αL, then a sphere of tracer would spread in an ellipsoidal shape 
with three unequal axes as it moved downstream. To further complicate the process in 3D, 
although the transverse directions are both perpendicular to the flow direction and to each other, 
their direction may be rotated at any angle about the flow direction. Their direction is here 
assumed to be a function of the flow direction and the principal permeability directions of the 
medium. Thus, the orientation of the ellipse that represents the transverse cross section of the 
tracer ellipsoid is also a function of the flow direction and principal permeability directions of 
the medium. 
 
Dispersion in 2D and 3D anisotropic media is described in SUTRA by ad-hoc models that allow 
dispersivity values to change as a function of flow direction relative to the principal permeability 
directions of the medium. The model in 2D is based on selecting dispersivities, αL and αT, as 
functions of flow direction from two ‘dispersivity ellipses’. The 3D model is based on selection 
of αL from one ‘dispersivity ellipsoid’, and the two transverse dispersivity values, αT1 and αT2, 
and their associated directions from another ‘dispersivity ellipsoid’, all as a function of flow 
direction. These models are described below.  
 
Anisotropic-media dispersion model – details 
 
In an anisotropic medium, the 2D and 3D dispersion tensors take the form (2.38a,b), and they are 
assumed symmetric, as for an isotropic medium. In 2D, the tensor has two mutually 
perpendicular principal directions of dispersion, about which dispersion is symmetric; an initially 
circular mass of tracer will disperse in an elliptical manner, with the axes of the ellipse falling 
along the principal dispersion directions. In 3D, the tensor has three mutually perpendicular 
principal directions of dispersion, about which dispersion is symmetric; an initially spherical 
mass of tracer will disperse in an ellipsoidal manner, with the axes of the ellipsoid falling along 
the principal dispersion directions. As a rule, the principal dispersion directions are not the same 
as the principal directions of permeability; the former directions can depend on the flow 
direction, whereas the latter do not. 
 
The principal directions of the 2D dispersion tensor are denoted here by the unit vectors V and 
U. In 3D, a third direction is added and is denoted by the unit vector W. The dispersion 
coefficients that correspond to V, U, and W are dL, dT1 (called simply dT in 2D), and dT2, 
respectively. The diagonal elements of the 2D dispersion tensor are 
 
    (2.41a) 2

xT
2
xLxx UdVdD +=

 
    (2.41b) 2

yT
2
yLyy UdVdD +=

 
and the off-diagonal elements are 
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   (2.41c) jiTjiLij UUdVVdD +=
 i ≠ j,  i=x,y 
  j=x,y 
 
In 3D, the diagonal elements are 
 
   (2.41d) 2

xT2
2
xT1

2
xLxx WdUdVdD ++=

 
   (2.41e) 2

yT2
2
yT1

2
yLyy WdUdVdD ++=

 
   (2.41f) 2

zT2
2
zT1

2
zLzz WdUdVdD ++=

 
and the off-diagonal elements are 
 
   (2.41g) jiT2jiT1jiLij WWdUUdVVdD ++=
 i ≠ j,  i=x,y,z 
  j=x,y,z 
 
To complete the dispersion model, it must be stated how the principal directions of dispersion, V, 
U, [and W], and their corresponding dispersion coefficients, dL, dT1, [and dT2], vary with flow 
direction. For SUTRA, an ad-hoc model is postulated in which one principal direction coincides 
with the flow direction (as it does for an isotropic medium), that is, V=v/v. Thus, V points in the 
longitudinal direction, and dL becomes the longitudinal dispersion coefficient. (Note that this is 
only a simplifying assumption. In general, the principal directions of dispersion are not 
necessarily parallel to and perpendicular to the flow direction.) In 2D, the vector U is transverse 
to the flow, dT becomes the transverse dispersion coefficient, and equations (2.41a-c) reduce to 
the isotropic form (2.39a-c), except that dL and dT are now functions of flow direction.  In 3D, 
the vectors U and W are both transverse to the flow, and dT1 and dT2 become the two transverse 
dispersion coefficients. As in the isotropic-media dispersion model, dispersion coefficients are 
obtained by multiplying dispersivities by the magnitude of the flow velocity: 
 
  dL = αLv   (2.42a) 
 
  dT1 = αT1v   [dT = αTv in 2D]  (2.42b) 
 
  dT2 = αT2v     (2.42c) 
 
In the 2D SUTRA dispersion model, the longitudinal and transverse dispersivities, αL and αT, are 
determined by the radii of two ellipses whose axes are assumed to be aligned with the maximum 
and minimum permeability directions. The procedure is illustrated for αL in Figure 2.4a. The 
semi-major and semi-minor axes of the ellipse are of length (αLmax)1/2 and (αLmin)1/2, respectively.  
The radius of the ellipse along the flow direction, V, is then (αL)1/2.  The transverse dispersivity, 
αT, is determined by computing the radius along the transverse direction, U, of an ellipse with 
semi-major and semi-minor axes of length (αTmax)1/2 and (αTmin)1/2, respectively.  Note that this 
convention differs from the one used in versions of SUTRA prior to version 2D3D.1 (Voss, 
1984); formerly, αT was determined by computing the radius along the flow direction. This 
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change makes the 2D dispersion model consistent with the 3D model discussed below. Note 
also that the subscripts “max” and “min” refer only to the maximum and minimum permeability 
directions. These are not intended to imply the relation in magnitude of αLmax and αLmin (the 
longitudinal dispersivities for flow in the max and min permeability directions, respectively), nor 
of αTmax and αTmin (the transverse dispersivities for flow in the max and min permeability 
directions, respectively). 
 
Let (  represent 2D coordinates aligned with the max and min permeability directions, that is, 

=(x
)ŷ,x̂

)ŷ,x̂( max, xmin).  If V̂  and Û  represent the vectors V and U, respectively, expressed in 
coordinates, then in 2D the longitudinal dispersivity is given by 

)ŷ,x̂( -

 

 
Lmin

kv
2

Lmax

kv
2

Lmin

2
ŷ

Lmax

2
x̂

L α
θsin

α
θcos

α
V̂

α
V̂

α
1

+=+=   (2.43a) 

 
or 
 

 
kv

2
Lmaxkv

2
Lmin

LminLmax
L θsinαθcosα

αα
α

+
=   (2.43b) 

 
where 
 
 αLmax(x,y) [L] squared radius of the longitudinal dispersivity 

ellipse in the maximum permeability 
direction, xmax, 

 
 αLmin(x,y) [L] squared radius of the longitudinal dispersivity 

ellipse in the minimum permeability direction, 
xmin, 

 
 θkv(x,y,t) [L] angle from maximum permeability direction, 

xmax, to the flow direction, V=v/v. 
 
The transverse dispersivity in 2D is given by 
 

 
Tmin

kv
2

Tmax

kv
2

Tmin

2
ŷ

Tmax

2
x̂

T α
θcos

α
θsin

α
Û

α
Û

α
1

+=+=   (2.44a) 

 
or 
 

 
kv

2
Tmaxkv

2
Tmin

TminTmax
T θcosαθsinα

αα
α

+
=   (2.44b) 

 
where 
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 αTmax(x,y) [L] squared radius of the transverse dispersivity 

ellipse in the maximum permeability 
direction, xmax, 

 
 αTmin(x,y) [L] squared radius of the transverse dispersivity 

ellipse in the minimum permeability direction, 
xmin. 

 
This form of longitudinal dispersivity dependence on direction of flow relative to the principal 
permeability directions is similar to that obtained for a transversely isotropic medium in a 
stochastic analysis of macrodispersion by Gelhar and Axness (1983). For 2D flow along the 
principal permeability directions, the longitudinal and transverse dispersivities take the following 
values: 
 

2D flow 
direction 

longitudinal 
dispersivity 

transverse 
dispersivity

xmax αLmax αTmin 
xmin αLmin αTmax 

 
In the 3D SUTRA dispersion model, which is a generalization of the 2D model, the longitudinal 
dispersivity, αL, is determined by the radius of an ellipsoid whose axes are assumed to be aligned 
with the max, mid, and min permeability directions. The procedure for αL is illustrated in Figure 
2.4b. The transverse dispersivities, αT1 and αT2, are determined using a second ellipsoid that is 
distinct from the one used to compute αL, but whose axes are also assumed to be aligned with the 
max, mid, and min permeability directions. The values of αT1 and αT2 are derived from the 
principal radii of the ellipse (hereafter called the “slicing ellipse”) formed by the intersection of 
the ellipsoid with the plane that is normal to the flow direction and passes through the center of 
the ellipsoid. The procedure for αT1 and αT2 is illustrated in Figure 2.4c. The semi-axes of the 
transverse dispersivity ellipsoid in the max, mid, and min permeability directions are of length 
(αTmax)1/2, (αTmid)1/2, and (αTmin)1/2, respectively.  The principal radii of the slicing ellipse are then 
(αT1)1/2 and (αT2)1/2. Note also that the subscripts “max,” “mid,” and “min” refer only to the 
maximum, middle, and minimum permeability directions. These are not intended to imply the 
relation in magnitude of αLmax, αLmid, and αLmin (the longitudinal dispersivities for flow in the 
max, mid, and min permeability directions, respectively), nor of αTmax, αTmid, and αTmin (the 
transverse dispersivities for flow in the max, mid, and min permeability directions, respectively). 
 
Let (  represent 3D coordinates aligned with the max, mid, and min permeability 
directions, that is, ( =(x

)ẑ,ŷ,x̂
)ẑ,ŷ,x̂ max, xmid, xmin).  If V̂ , Û , and W  represent the vectors ˆ V, U, and 

W, respectively, expressed in ( -coordinates, then in 3D the longitudinal dispersivity is 
given by 

)ẑ,ŷ,x̂

 

 kv2
2

Lmin
kv2

2

Lmid

kv1
2

Lmax

kv1
2

Lmin

2
ẑ

Lmid

2
ŷ

Lmax

2
x̂

L

θsin
α

1θcos
α
θsin

α
θcos

α
V̂

α
V̂

α
V̂

α
1









+








+=++=  (2.45a) 

 
or 
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 ( ) kv2
2

LmidLmaxkv2
2

kv1
2

Lmaxkv1
2

LmidLmin

LminLmidLmax
L θsinααθcosθsinαθcosαα

ααα
α

++
= , (2.45b) 

 
where 
 
 αLmax(x,y) [L] squared radius of the longitudinal dispersivity 

ellipsoid in the maximum permeability 
direction, xmax, 

 
 αLmid(x,y) [L] squared radius of the longitudinal dispersivity 

ellipsoid in the middle permeability direction, 
xmid, 

 
 αLmin(x,y) [L] squared radius of the longitudinal dispersivity 

ellipsoid in the minimum permeability 
direction, xmin, 

 
 θkv1(x,y,t) [L] angle from maximum permeability direction, 

xmax, to the flow direction, V=v/v, measured 
within the (xmax , xmid)-plane, 

 
 θkv2(x,y,t) [L] angle upward from the (xmax , xmid)-plane to 

the flow direction, V=v/v. 
 
The transverse dispersivities in 3D are given by 
 

 
Tmin

2
ẑ

Tmid

2
ŷ

Tmax

2
x̂

T1 α
Û

α
Û

α
Û

α
1

++= ,  (2.46a) 

 

 
Tmin

2
ẑ

Tmid

2
ŷ

Tmax

2
x̂

T2 α
Ŵ

α
Ŵ

α
Ŵ

α
1

++= .  (2.46b) 

 
where 
 
 αTmax(x,y) [L] squared radius of the transverse dispersivity 

ellipsoid in the maximum permeability 
direction, xmax, 

 
 αTmid(x,y) [L] squared radius of the transverse dispersivity 

ellipsoid in the middle permeability direction, 
xmid, 

 
 αTmin(x,y) [L] squared radius of the transverse dispersivity 

ellipsoid in the minimum permeability 
direction, xmin. 
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The geometric construction that determines αT1 and αT2 and their corresponding eigenvectors Û  
and Ŵ  (namely, the ellipse formed by the intersection of a plane with an ellipsoid) is analogous 
to that which determines indices of refraction and directions of vibration in the optics of biaxial 
crystals. Taking advantage of this analogy, SUTRA uses the Biot-Fresnel construction to 
compute Û  and Ŵ  and, in turn, αT1 and αT2. The procedure is described in texts on optical 
mineralogy (see, for example, Nesse (1986)) and is not described here except to note that the unit 
flow vector, V , is analogous to the wave normal; the other two eigenvectors, ˆ Û  and Ŵ , are 
analogous to the two vibration directions; the flow directions for which αT1=αT2 are analogous to 
the optic axes; (αTmax)1/2, (αTmid)1/2, and (αTmin)1/2 are analogous to the principal indices of 
refraction; and (αT1)1/2 and (αT2)1/2 are analogous to the indices of refraction corresponding to the 
vibration directions. 
 
For 3D flow along the principal permeability directions, the longitudinal and transverse 
dispersivities take the following values: 
 

3D flow 
direction 

longitudinal 
dispersivity 

transverse 
dispersivities 

xmax αLmax αTmid, αTmin 
xmid αLmid αTmax, αTmin 
xmin αLmin αTmax, αTmid 

 
 
 
Guidelines for applying dispersion model 
 
Some informal guidelines may be given concerning values of dispersivities when other data are 
not available. Longitudinal dispersivities may be considered to either be on the order of the size 
of the largest hydrogeologic or flow inhomogeneities along the transport reach, or the distance 
between inhomogeneities, whichever is the greater value. For transport in pure homogeneous 
sand, longitudinal dispersivity is on the order of grain size. This is the type of situation where the 
isotropic-media dispersion model describes well the observed transport behavior. In the case of a 
sandy aquifer containing well-distributed inclusions of less permeable material, the longitudinal 
dispersivity required to correct an average advective transport that has passed by many of the 
inclusions would be on the order of the larger of either inclusion size or distance between 
inclusions. 
 
Should the dispersivity, estimated on the basis of the size of inhomogeneities or distance 
between them, be greater than about one tenth of the longest transport reach, then the meaningful 
use of a constant-dispersivity dispersion model must be questioned. In such a case, the ideal 
action to take would be to more explicitly define the field distribution of velocity by taking into 
account the actual geometry of inhomogeneities. This would correctly account for most of the 
transport that takes place as advective in nature, with much smaller contributions of the 
approximate dispersive process. Given a better-defined velocity field, and in the absence of other 
data, dispersivity should then be chosen based on the largest postulated inhomogeneities met 
along a given average stream tube. The size and distribution of inhomogeneities not explicitly 
taken into account by the average flow field may be postulated based on the best available 
knowledge of local geology. 
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Transverse dispersivity, αT, is typically even less well known for field problems than 
longitudinal dispersivity. Values of αT used in simulation are typically between one tenth and 
one third of αL. In systems with anisotropic permeability, αT may be less than one hundredth of 
αL for flows along the maximum permeability direction (Gelhar and Axness, 1983). Should 
simulated transport in a particular situation be sensitive to the value of transverse dispersivity, 
further data collection is necessary and the transport model must be interpreted with great care. 
 
The ad-hoc models for longitudinal dispersion in anisotropic media presented in the previous 
sections allow for simulation experiments with two or three principal longitudinal dispersivities 
that may be of special interest in systems with well-defined anisotropy values. Depending on the 
particular geometry of layers or inhomogeneities causing the permeability anisotropy, the 
longitudinal dispersivity in the minimum permeability direction, αLmin, may be either greater or 
smaller than those in the middle and maximum permeability directions, αLmid and αLmax. 
However, use of the anisotropic-media dispersion model is advised only when clearly required 
by field data, and the additional longitudinal dispersion parameters are not intended for general 
application without evaluation of their applicability in each particular case. Another use of the 
ad-hoc model is in the case of 2D cross sectional or 3D simulation wherein the lateral extent of 
the system is much greater than the vertical extent. In this case, lateral flow and transport may be 
affected by heterogeneities similar in size to the lateral scale, and vertical flow and transport may 
be affected by heterogeneities similar in size to the much smaller vertical scale. Here, it makes 
sense to employ the ad-hoc model to assign different longitudinal dispersivities for lateral and 
vertical flow. 
 
 
2.6 Unified Description of Energy and Solute Transport 
 
Unified energy-solute balance 
 
The saturated-unsaturated ground-water energy balance (2.28) is simply an accounting of energy 
fluxes, sources and sinks which keeps track of how the energy per unit volume of solid matrix 
plus fluid, [εSwρcw + (l–ε)ρscs]T, changes with time at each point in space. The saturated-
unsaturated ground-water balance of solute plus adsorbate mass, (2.31), is similarly an 
accounting of solute and adsorbate fluxes, sources and sinks, which keeps track of how the 
species mass (solute plus adsorbate mass) per unit volume of solid matrix plus fluid,  
(εSwρC + (l–ε)ρsCs), changes with time at each point in space. Both balances, therefore, track a 
particular quantity per unit volume of solid matrix plus fluid. 
 
The fluxes of energy and solute mass in solution, moreover, are caused by similar mechanisms. 
Both quantities undergo advection based on average flow velocity, v. Both quantities undergo 
dispersion. Both quantities undergo diffusion; the diffusive solute mass flux is caused by 
molecular or ionic diffusion within the fluid, while the diffusive energy flux occurs by thermal 
conduction through both fluid and solid. Fluid sources and sinks give rise to similar sources and 
sinks of energy and solute mass. Energy and species mass may both be produced by zero-order 
processes, wherein energy may be produced by an exothermic reaction and solute may be 
produced, for example, by a biological process. The linear adsorption process affecting solutes is 
similar to the storage of energy in solid portion of an aquifer. Only the nonlinear sorption 
processes and first-order production of solute and adsorbate have no readily apparent analogy in 
terms of energy. 
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Thus, the balances of energy per unit volume, (2.28), and total species mass per unit volume, 
(2.31), may be expressed in a single unified balance in terms of a variable, U(x,y,t), which may 
represent either T(x,y,t) or C(x,y,t), as follows: 
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where: 
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 (2.47a) 

 
for solute transport 

  (2.47b) 1c,0,D,CU,CU,CU wsmwss ≡≡σ≡σ≡≡≡ ∗∗

 where Cs is defined by (2.34a), (2.35a) or (2.36a), depending on the isotherm. 
 
By simple redefinition according to (2.47a) or (2.47b), equation (2.47) directly becomes the 
energy or species mass balance. This redefinition is automatically carried out by SUTRA as a 
result of whether the user specifies energy or solute-transport simulation. 
 
Fluid-mass-conservative energy-solute balance 
A further consideration is required before obtaining the form of the unified energy/solute balance 
as implemented in SUTRA. The amount of energy or solute per unit combined matrix-fluid 
volume may change either due to a change in the total fluid mass in the volume even when 
concentration and temperature remain constant (see relation (2.10)). Such a change in fluid mass 
may be caused by changes in fluid saturation, or by pressure changes affecting compressive 
storage. 
 
The energy and solute balances as well as their unified form, (2.47), track both types of 
contributions to changes in total stored energy or solute mass. However, the fluid saturation and 
pressure change contribution to energy and solute balances are already implicitly accounted for 
by the fluid mass balance. 
 
The fluid mass balance contribution to solute and energy balances is expressed by the product of 
the fluid mass balance, equation (2.22) (which tracks changes in fluid mass per unit volume), 
with cwU (which represents either energy or solute mass per unit fluid mass). Note that cw≡1 for 
solute transport. This product tracks energy or solute mass changes per unit volume due to fluid 
mass changes per unit volume: 
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where the solute mass source, ϒ , is neglected. Comparison of (2.48) with (2.47) will reveal that 
the terms on the left of (2.48) also appear in the unified balance equation. 
 
Prior to substituting (2.48) for the duplicate terms in (2.47), the search for redundant terms may 
be extended to a balance of species mass or energy stored in the solid matrix, rather than in the 
fluid. A simple mass balance for the solid matrix is: 
 

  ( )[ ] ( )[ ] 0v11
t sss =ρε−⋅∇+ρε−

∂
∂   (2.49) 

 
 vs [L/s] net solid matrix velocity 
 
Due to the assumption that the net solid matrix velocity, vs, is negligible, the associated term of 
(2.49) is dropped. The contribution of this simple solid matrix mass balance to the unified solute-
energy balance may again be obtained by taking the product of (2.49) with Us: 
 

 ( ) ( )[ ] 01
t

U ss =ρε−
∂
∂    (2.50) 

 
A comparison reveals that this term also appears in (2.47). 
 
The redundant information in the unified energy-solute balance which keeps track of both solid 
matrix and fluid mass balance contributions may be directly removed from (2.47) by subtracting 
(2.48) and (2.50). The result is: 
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where: 
 
 for energy transport 

 s
os

w
ow

w

s
s

w

w
wss ,,

c
,

c
,TU,TcU,TU γ≡Γγ≡Γ

ρ
λ

≡σ
ρ
λ

≡σ≡≡≡ ∗∗  (2.51a) 

 
 for solute transport 
  (2.51b) 1c,0,D,CU,CU,CU wsmwss ≡≡σ≡σ≡≡≡ ∗∗

 where Cs is defined by (2.34a), (2.35a) or (2.36a), depending on isotherm. 
 
It is assumed in equation (2.51) that cw and cs are not time-dependent. 
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For numerical simulation, this equation may be termed a “fluid-mass conservative” form of the 
energy or species mass balance. When approximated numerically, the unified balance in the 
original form, (2.47), would contain approximation errors in both the fluid mass balance 
contributions (based on pressure and saturation changes) and the temperature or concentration 
change contribution. However, in the revised form, equation (2.51), the complete fluid mass 
balance contribution has already been analytically accounted for before any numerical 
approximation takes place. Thus, the total approximation error for the unified balance, (2.51), is 
significantly less as it is due to the temperature or concentration change contribution only. 
 
The unified energy-species mass balance is brought to its final form by noticing that the form of 
the term, U∂ s/ t, for energy transport, is the same as that for solute transport when using the 
equilibrium sorption relation (2.33), and that the form of the energy production terms is similar 
to that of relations (2.37a) and (2.37b) for the mass production process: 

∂
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where: 
 
 for energy transport 
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 for solute transport 
  (2.52b) 1c,c,0,D,CU,CU,CU w1ssmwss ≡κ≡≡σ≡σ≡≡≡ ∗∗

where Cs is defined by (2.34a), (2.35a) or (2.36a), and κ1 is defined by (2.34c), (2.35c) or 
(2.36c), depending on the isotherm. 

 
The fluid-mass-conservative form of the unified energy-species mass balance, (2.52), is exactly 
that which is implemented in SUTRA. 
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Chapter 3: Fundamentals of Numerical Algorithms 
 
SUTRA methodology is complex because: (1) density-dependent flow and transport requires two 
interconnected simulation models, (2) fluid properties are dependent on local values of 
temperature or concentration, (3) geometry of a field area and distributions of hydrogeologic 
parameters may be complex, and (4) hydrologic stresses on the system may be distributed in 
space and change with time. Furthermore, a tremendous amount of data must be evaluated by 
SUTRA with precision. This requires great computational effort, and considerable numerical 
intricacy is required to minimize this effort. The mathematically elegant finite-element and 
integrated-finite-difference hybrid method employed by SUTRA allows great numerical 
flexibility in describing processes and characteristics of flow and transport in hydrologic field 
systems. However, unlike simulation models based purely on the method of finite differences, 
the numerical aspects of which allow straightforward interpretation at an intuitive level, some 
finite-element aspects of SUTRA methodology require interpretation at a less physical level and 
from a more mathematical point of view. 
 
The following description of SUTRA numerical methods uses a simplified, constant-density 
water-table aquifer case in 2D as an illustrative example. While precise mathematically, this 
example is not used to demonstrate an actual application of SUTRA, as SUTRA, in fact, does not 
simulate a moving water table. The example is only used as a device through which to explain 
the theory and use of the primary numerical methods employed in SUTRA, and the water table is 
invoked to allow discussion of a simple nonlinearity. The basic methods, which are only 
demonstrated here, are applied in detail in Chapter 4, “Numerical Methods,” to the SUTRA fluid 
mass balance and unified energy-species mass balance. 
 
The water-table aquifer fluid mass balance equation is useful for demonstration of basic 
numerical methods employed on SUTRA governing equations, because it displays some of the 
salient aspects of the SUTRA equations: a time derivative, a nonlinear term involving space-
derivatives, and a source term. The simplified fluid mass balance equation is as follows: 
 

 ( ) ∗=∇⋅∇−
∂
∂ QhK

t
hSo   (3.1) 

 
where Q* = (Qp/ρ) 
 
and 
 
 So(x,y) [L–1] specific storativity 
 
 
 h(x,y,t) [L] hydraulic head (sum of pressure head and 

elevation head) 
 
 
 K(x,y) [L/s] hydraulic conductivity (assumed for this 

example to be isotropic) 
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 Q*(x,y) [s–1] volumetric fluid source (volume fluid injected 

per time / volume aquifer) (assumed constant 
for this example) 

 
 
 Qp(x,y) [M/(L3 s)] fluid mass source (mass fluid injected per 

time / volume aquifer) (assumed constant for 
this example) 

 
 
 ρ [M/L3] fluid density (assumed constant for this 

example) 
 
This equation, (3.1), is obtained from the SUTRA fluid mass balance, (2.24), by assuming 
saturated conditions, constant concentration and temperature, constant fluid density, and using 
the definition of hydraulic conductivity, K ≡ (kρ g )/µ, where g  is the acceleration of gravity, 

and of hydraulic head, h h≡ p + ELEVATION, where pressure head, hp ≡ p/(ρ g ). For clarity, 
hydraulic conductivity is assumed isotropic in this example. While (3.1) may be considered a 
fully 3D mass balance equation, it is assumed that flow takes place only areally in a water-table 
aquifer with a fixed impermeable base (at z-position, BASE(x,y)), and a moveable free surface 
(at z-position, h(x,y,t)). The z-direction is oriented vertically upward and the fluid is assumed to 
be in vertical hydrostatic equilibrium at any (x,y) position (no vertical flow). Aquifer thickness, 
B(x,y,t) [L], is measured as the distance along z from the free surface to the aquifer base, and 
may change with time. Aquifer transmissivity, T(x,y,t), is given by: 
 
    (3.2) ( BASEhKKB −≡≡T )
 
 T(x,y,t) [L2/s] aquifer transmissivity 
 
 B(x,y,t) [L] aquifer thickness 
 
 BASE(x,y) [L] elevation of aquifer base 
 
The above assumption, in effect, makes (3.1) a 2D mass balance equation that is applied to an 
aquifer of finite thickness. The 2D form of (3.1) describing an areal fluid mass balance for water-
table aquifers in terms of a head-dependent transmissivity arises during the basic numerical 
analysis of (3.1) in section 3.3, “Integration of Governing Equation in Space.” 
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Figures 3.1a,b. (a) Two-dimensional finite-element mesh and quadrilateral element. (b) Three-
dimensional vertically-aligned finite-element mesh and vertically-aligned generalized hexahedral 
element. In the lower figure, the z-direction is vertical and element edges in the vertical direction are 
aligned with the z-coordinate direction. External and internal surfaces of the mesh need not be 
planar. 
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node

3D element

(c) 
 

Figure 3.1c. Three-dimensional non-aligned finite-element mesh and non-aligned generalized 
hexahedral element. In general, the z-direction need not be vertical or aligned with the mesh, and the 
element edges need not be aligned with any coordinate direction. External and internal surfaces of 
the mesh need not be planar. 

 
 
3.1 Spatial Discretization by Finite Elements 
 
Regardless of whether SUTRA is applied as a 2D or 3D model, the region of space in which 
flow and transport are to be simulated is defined in three space dimensions. For 2D simulation, 
the 3D bounded volume of an aquifer that is to be simulated by SUTRA is completely divided up 
into a single layer of contiguous blocks. For 3D simulation, the 3D bounded volume of an 
aquifer that is to be simulated by SUTRA is completely divided up into a set of contiguous 
blocks, which are organized in layers. The blocks are called “finite elements.” The subdivision is 
not done simply in a manner that creates one block (element) for each portion of the aquifer 
system that has unique hydrogeological characteristics. Each hydrogeologic unit is in fact 
divided into many elements, giving the subdivided aquifer region the appearance of a fine mesh. 
Thus, subdivision of the aquifer region to be simulated into blocks is referred to as “creating the 
finite-element mesh”. 
 
The basic building block of a finite-element mesh is a finite element. The type of element 
employed by SUTRA for 2D simulation is a quadrilateral that has a finite thickness in the third 
space dimension. This type of a quadrilateral element and a typical 2D mesh are shown in Figure 
3.1a. 
 
All twelve edges of the 2D quadrilateral element are perfectly straight. Four of these edges are 
parallel to the z-coordinate direction. The x-y plane (which contains the two coordinate 
directions of interest) bisects each of the edges parallel to z, so that the top and bottom surfaces 
of the element are mirror images of each other reflected about the central x-y plane in the 
element. The midpoint of each z-edge (the point where the x-y plane intersects) is referred to as a 
nodal point (or node). Thus, the element has a 3D shape, but always has only four nodes, each of 
which in fact, represents the entire z-edge on which it is located. The nodes mark the fact that, in 
this type of element, some aquifer parameters may be assigned a different value at each z-edge of 
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the element. The lack of nodes outside of the x-y plane is what makes this element 2D; while 
some aquifer parameters may vary in value from node to node (i.e., from z-edge to z-edge), no 
parameters may be assigned varying values in the z-direction. 
 
Within a 2D finite-element mesh there is only a single layer of elements, the nodes of which lie 
in the x-y plane. Nodal points are always shared by the elements adjoining the node. Only nodes 
at external corners of the mesh are not contained in more than one element. The top and bottom 
surfaces are at every (x,y) point equidistant from the x-y plane, but the thickness of the mesh, 
measured in the z-direction, may vary smoothly from point to point. 
 
When projected on the x-y plane, as in Figure 3.1a, a 2D finite-element mesh composed of the 
type of elements used by SUTRA appears as a mesh of contiguous quadrilaterals with nodes at 
the corners; hence, the term, “quadrilateral element”. Although the mesh in Figure 3.1a is 
regularly connected (four elements attached to each internal node), 2D meshes may have 
irregular connections; in other words, any number of elements may be connected to a given 
node. 
 
The type of element employed by SUTRA for 3D simulation is a generalized hexahedron. This 
type of hexahedral element and a typical 3D meshes are shown in Figure 3.1b and Figure 3.1c. 
 
All twelve edges of the 3D generalized hexahedral element are perfectly straight, although the 
six faces of the element need not be planar. The 3D SUTRA element differs from the 2D element 
in that none of the edges of the 3D element need be parallel to the z-coordinate direction, and the 
geometry of the 3D element is defined by eight (instead of four) nodes, each of which represents 
the intersection of three edges (i.e., a corner of the element). 
 
Unlike a 2D mesh, a 3D SUTRA finite-element mesh is not restricted to a single layer of 
elements, nor do the nodes of a 3D mesh need to align in any way with the x-, y-, and z-
coordinate directions. However, the 3D mesh must be logically rectangular; it must be possible 
(hypothetically) to reposition the nodes to form a regular mesh of cube-shaped elements without 
adding or deleting any connections between nodes. In other words, although the geometry of the  
mesh may be irregular, the nodes must be logically connected in the same manner as in a regular 
mesh. A 3D, logically rectangular mesh can be thought of as consisting of rows, columns, and 
layers of elements, with each row, column, and layer containing its full complement of elements. 
The 3D SUTRA mesh illustrated in Figure 3.1b is logically rectangular and vertically aligned; 
this mesh is an extrusion in the z-direction of the 2D mesh that makes up the top surface. The 3D 
SUTRA mesh illustrated in Figure 3.1c is logically rectangular and non-aligned in the vertical 
direction. 
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3.2 Representation of Coefficients in Space 
 
Aquifer parameters and coefficients that vary from point to point in an aquifer, such as specific 
storativity, So, and hydraulic conductivity, K, are represented in an approximate way in SUTRA. 
Parameters are either assigned a particular constant value in each element of a finite-element 
mesh (elementwise), or are assigned a particular value at each node in the mesh in two possible 
ways (nodewise or cellwise). Descriptions of elementwise, nodewise, and cellwise discretization 
are given for the 2D example that follows, based on (3.1). The discretization procedures in 3D 
are analogous to those in 2D. 
 
In the water-table aquifer, for a simple example, a regular 2D mesh is used. The step-like 
appearance of elementwise assignment of K values over this simple mesh is shown in Figure 3.2. 
Nodewise assignment for head over this mesh results in a continuous surface of h values as 
shown in Figure 3.3, with linear change in value between adjoining nodes along (projected) 
element edges. Cellwise assignment is employed for specific storativity, So, and the time 
derivative, ∂h/∂t. This results in a step-like appearance of the assigned values over the mesh 
similar to that of elementwise assignment in Figure 3.2, but each cell is centered on a node, not 
on an element. Cell boundaries are half way between opposite sides of an element and are shown 
for the regular mesh in Figure 3.4. Thus the spatial distributions of parameters, K, h and So, are 
discretized (i.e., assigned discrete values) in three different ways: K, elementwise, h, nodewise, 
and So, cellwise. 
 

 
Figure 3.2. Elementwise discretization of coefficient K(x,y). KL is the value of K in element L. 
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Figure 3.3. Nodewise discretization of coefficient h(x,y). 

 
 

 
Figure 3.4. Cells, elements and nodes for a two-dimensional finite-element mesh composed of 
quadrilateral elements. Dashed lines connect the midpoints along the element sides. 

 
 
Because the internal program logic depends on the type of discretization, SUTRA expects 
particular parameters or equation terms to be discretized elementwise, nodewise, or cellwise. The 
primary dependent variables of the SUTRA code, p, and T or C, (in this example case, only 
hydraulic head, h), are expressed nodewise when used in terms that calculate fluxes of fluid 
mass, solute mass or energy. 
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Elementwise discretization 
 
The equation that gives the values, over the finite element mesh, of an elementwise parameter, 
may be expressed for the hydraulic conductivity of the present 2D example as: 
 

   (3.3) ( ) ( yx,Kyx,K L

NE

1L
∑

=

≈ )

 
where the elements have been numbered from one to NE (total number of elements in the mesh), 
and KL(x,y) [L/s] has the value of hydraulic conductivity of element L for (x,y) coordinates 
within the element, and a value of zero outside the element. Thus KL(x,y) is the flat-topped 
“box” standing on an element L, in Figure 3.2, and K(x,y) is represented in a discrete 
approximate way by the sum of all the “boxes”. Note that KL(x,y) has the same value throughout 
each 2D element from the top to the bottom. 
 
Nodewise discretization 
 
The equation that gives the values, over the finite-element mesh, of a nodewise value, may be 
expressed for the 2D mesh as: 
 

   (3.4) ( ) ( ) ( yx,thty,x,h jj

NN

1j

φ≈ ∑
=

)

 
where the nodes have been numbered from one to NN (total number of nodes in the mesh). There 
are NN coefficients, hj(t), each of which is assigned the value of head at the coordinates (xj,yj) of 
node number j. These nodal head values may change with time to represent transient responses 
of the system. The function φj(x,y) is known as the “basis function”. It is the basis functions that 
spread values of head between the nodes when head is defined only at the nodal points by values 
of h. There is one basis function φj(x,y) defined for each node, j, of the NN nodes in the mesh. 
Suffice it to say, at this point, that at the node j, to which it belongs, the basis funtion φj(x,y) has 
a value of one. At all other nodes i, i ≠ j, in the mesh, it has a value of zero. It drops linearly in 
value from one to zero along each projected element edge to which the node j is connected. This 
means that even when all the NN products of hj and φj(x,y) are summed (as in relation (3.4)), if 
the sum is evaluated at the coordinates (xj,yj) of node j, then h(x,y) exactly takes on the assigned 
value, hj. This is because the basis function belonging to node j has a value of one at node j, and 
all other basis functions belonging to other nodes, i, i ≠ j, have a value zero at node j, thereby 
dropping them from the summation in (3.4). Basis functions are described mathematically in 
section 4.1, “Basis and Weighting Functions.” 
 
Cellwise discretization 
 
The equation that gives the values, over the finite-element mesh, of a cellwise parameter may be 
expressed for the specific storativity of the present 2D example as: 
 

    (3.5) ( ) ( )y,xSy,xS i

NN

1i
o ∑

=

≈
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where Si(x,y) has the value of specific storativity of the cell centered on node i for (x,y) 
coordinates within the cell, and a value of zero outside the cell. Thus, Si(x,y) is a flat-topped 
“box” standing on a cell i in Figure 3.4, and So(x,y) is represented in a discrete, approximate way 
by the sum of all the “boxes.” Note Si(x,y) has the same value in the z-direction from the top to 
bottom of each 2D element. 
 
Reviewing the example problem, K is assigned elementwise and both So and ∂h/∂t are assigned 
cellwise. Hydraulic head, h(x,y,t), and element thickness, B(x,y,t), measured in the z-direction, 
are both discretized nodewise, with the nodewise expansion for thickness: 
 

    (3.6) ( ) ( ) ( y,xtBy,xB ii

NN

1i

φ≈ ∑
=

)

 
The values Bi(t) are the NN particular values of element thickness at the nodes, and these values 
may change with time in the present water-table example. Relation (3.6) should call to mind a 
vision of discretized values of thickness represented by a surface similar to that of Figure 3.3. 
The head surface of Figure 3.3 may stretch or shrink to move up or down as the head values at 
nodes, hi(t), change with time due to stresses on the aquifer system. The nodewise discretized 
surface may be viewed as the water table, and the element thickness, at any point (x,y), as the 
thickness of the water-table aquifer. 
 
 
3.3 Integration of Governing Equation in Space 
 
Approximate governing equation and weighted residuals method 
 
The governing equation for the water-table example may be written in operator form as: 
 

 ( ) ( ) 0QhK
t
hShO o =−∇⋅∇−

∂
∂

= ∗   (3.7) 

 
Certain variables in this equation are approximated through elementwise and nodewise 
discretization. Particular terms of the equation are approximated through cellwise discretization. 
The result is that neither the derivatives, nor the variables are described exactly. Relation (3.7) no 
longer exactly equals zero: 
 
 ( ) ( )t,y,xRhO =      (3.8) 
 
Where ( )hO  is the result of approximating the terms of the equation and the variables, and 
R(x,y,t) is the residual value of the approximated equation.  When simulating a system with a 
numerical model based on approximation of the governing equation, ( )hO , the residual, R, 
must be kept small everywhere in the simulated region and for the entire time of simulation in 
order to accurately reproduce the physical behavior predicted by the exact governing equation, 
(3.7). 
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In order to achieve a minimum error, a method of weighted residuals is applied to (3.8). The 
purpose of the method of weighted residuals is to minimize the error of approximation in 
particular subregions of the spatial domain to be simulated. This is done by forcing a weighted 
average of the residual to be zero over the subregions. This idea is the most abstract of those 
required to understand SUTRA methodology. The Galerkin method of weighted residuals 
chooses to use the “basis function”, φi(x,y), mentioned in the previous section, as the weighting 
function for calculation of the average residual: 
 
 ( ) ( ) ( ) ( ) NN,1i0dVy,xt,y,xRdVy,xhO

V
i

V
i ==φ=φ ∫∫  (3.9) 

 
where V is the volume of the region to be modeled. The model volume is completely filled by a 
single layer of quadrilateral finite elements. Relation (3.9) is actually NN relations, one for each 
of NN nodes in the finite element mesh as indicated by the notation, i = NN,1 . 
 
In each relation, the integral sums the residual weighted by the basis function over a volume of 
space. Each integrated weighted residual is forced to zero over the region of space in which 
φi(x,y) is nonzero. This region includes only elements which contain node i, because of the 
manner in which the basis function is defined, as described earlier. Thus, over each of these NN 
subregions of a mesh, the sum of positive and negative residuals after weighting is forced to zero 
by relation (3.9). This, in effect, minimizes the average error in approximating the governing 
equation over each subregion. 
 
After stating that the integral of weighted residuals must be zero for each subregion of the mesh 
as in (3.9), the derivation of the numerical methods becomes primarily a job of algebraic 
manipulation. The process is begun by substitution of the governing equation for ( )hO  in 
(3.9): 
 

 
( ) ( ) ( ) ( )

NN,1i

0dVy,xQdVy,xhKdVy,x
t
hS

V
i

V V
iio

=

=φ−φ∇⋅∇−φ
∂
∂

∫∫ ∫ ∗

 (3.10) 

 
The terms in double pointed parentheses are the approximate discrete forms of the respective 
terms in (3.7). These are expanded in the manipulations that follow. Relation (3.10) is discussed 
term by term in the following paragraphs. 
 
Cellwise integration of time-derivative term 
 
The first term involving the volume integral of the time derivative may be written in terms of the 
three space dimensions, x, y, and z. Although the governing equation and parameters vary only 
in two space dimensions, they apply to the complete 3D region to be modeled. 
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The rearrangement in the final term of (3.11) is possible because no parameter depends on z. In 
fact, referring to (3.2), the aquifer thickness, B(x,y,t), may be defined as: 
 

 ( )
( )

( ) ( )y,xBASEt,y,xhdzt,y,xB
tz

−== ∫  (3.12) 

 
The final term of (3.11) is then: 
 

 ( ) ( )∫ ∫ φ
∂
∂

y x
io dydxt,y,xBy,x

t
hS   (3.13) 

 
Now cellwise discretization is chosen for So and for ∂h/∂t, making these terms take on a constant 
value for the region of each cell i. The region of cell i is the same region over which Si(x,y) is 
non-zero. Then, for any cell i, term (3.13) becomes: 
 

 ( ) ( )∫ ∫ φ
∂
∂

y x
i

i
i dydxt,y,xBy,x

t
hS   (3.14) 

 
where Si and  ∂hi/∂t are the values taken by So and  ∂h/∂t in cell i. 
 
It can be shown that the volume of cell i, denoted by Vi(t), is, in fact, the integral in (3.14): 
 
   (3.15) ( ) ( ) ( )∫ ∫ φ=

y x
ii dydxt,y,xBy,xtV

 
For a particular finite-element mesh, the volume Vi(t) of each cell is determined by numerical 
integration of (3.15). Numerical integration by Gaussian quadrature is discussed in section (4.3), 
“Gaussian Integration.” 
 
Given the value of the specific storativity of each cell, Si, the time derivative of head in each cell, 
∂hi/∂t, and given the volume of each cell, Vi(t), determined numerically, the first term of the 
weighted residual statement takes on its discrete approximation in space: 
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Elementwise integration of flux term and origin of boundary fluxes 
 
Manipulation of the second integral in (3.10) begins with the application of Green’s theorem, 
which is an expanded form of the divergence theorem. This converts the integral into two terms, 
one of which is evaluated only at the surface of the region to be simulated. Green’s theorem is: 
 
 ( ) ( ) ( )∫∫∫ ∇⋅−Γ⋅=⋅∇

Γ VV

dVAWdAnWdVAW  (3.17) 

 
where A is a scalar and W is a vector quantity. The boundary of volume V is denoted by Γ, 
which includes both the edges and the upper and lower surfaces of the aquifer, and n is a unit 
outward normal vector to the boundary. Application of (3.17) to the second term in (3.10) results 
in: 
 

 
[ ] ( ) [ ]

∫

∫∫
φ∇⋅∇+
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Γ
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i

i
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i

dVhK

dnhKdVy,xhK
 (3.18) 

 
The first term on the right of (3.18) contains a fluid flux given by Darcy’s law: 
 

 nhKv OUT ⋅∇−=ε    (3.19) 

 
where  is the outward velocity at the boundary normal to the bounding surface. Thus, the 
integral gives the total flow out across the bounding surface, , in the vicinity of a node i on 
the surface: 

OUTv

iOUTQ

 
 ( )∫

Γ

Γφε= dvQ
iOUTOUTi

  (3.20) 

 
An inflow would have a negative value of , and the relation between an inflow, , and 
outflow is: . Thus, the first integral on the right of (3.18) represents flows across 
boundaries of the water-table aquifer model. 

iOUTQ
iINQ

ii OUTIN -QQ =

 
The second integral on the right of (3.18) may be expressed in three spatial coordinates: 
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∫ ∫ ∫∫

φ∇⋅∇=







φ∇⋅∇=

φ∇⋅∇=φ∇⋅∇

x y
i

x y z
i

x y z
i

V
i

dxdyt,y,xBhKdxdydzhK
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 (3.21) 

 
No term varies in the z-direction, allowing the use of (3.12), which defines aquifer thickness B. 
Notice that the transmissivity as given by (3.2), T = KB, appears in the form of the integral just 
obtained. 
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Now the approximation hK ∇  is specified in the integral. Hydraulic head, h(x,y,t), is 
approximated in a nodewise manner as given by relation (3.4). The integral of (3.21) becomes:  
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 (3.22) 

 
where K  is the elementwise approximation for K(x,y).  The summation and hj(t) may be 
factored out of the integral because hj is a value of head at a node and does not vary with x and y 
location. The integral is represented by Iij(t) and depends on time because aquifer thickness, B, is 
time-dependent for this water-table case. For each node i, there are apparently j=NN integrals 
which need to be evaluated. In fact, due to the way in which basis functions are defined, there are 
only a few which are nonzero, because (∇φj  ∇φi) is nonzero only when nodes i and j are in the 
same finite element. When nodes i and j are in different elements, then ∇φj is zero in the element 
containing node i. 
 
The integrals are evaluated numerically by Gaussian integration. This is accomplished by first 
breaking up the integral over the whole volume to be simulated, into a sum of integrals, one each 
over every finite element in the mesh: 
 

 ( ) ( ) ( )∑ ∫ ∫∫ ∫
=

φ∇⋅φ∇=φ∇⋅φ∇=
NE

1L x y
ij

x y
ijij

L L

dxdyBKdxdyBKtI  (3.23) 

 
There are NE elements in the mesh, L is the element number, and xL and yL are the x and y 
spatial domains of element L. Thus, for a given L, the integral over xL and yL is integrated only 
over the area of element L. 
 
Now, the discrete elementwise approximation for hydraulic conductivity, as given by (3.3), 
allows one term for element L in the summation of (3.23) to be written as:   
 
 ( )∫ ∫ φ∇⋅φ∇

L Lx y
ijL dxdyBK   (3.24) 

 
Here, the thickness B is specified to vary nodewise. The formula for B in this example is 
obtained by substituting the nodewise expression for head, (3.4), into the definition of B, relation 
(3.2). 
 
The integral over one element, as given by term (3.24), must be evaluated numerically. In order 
to do this, the coordinates of the element L, which has an arbitrary quadrilateral shape as 
suggested in Figure 3.1a, is transformed to a new coordinate system in which the element is a 
two-by-two square. Then, Gaussian integration is carried out to evaluate the integral. For a given 
combination of nodes i and j, this transformation and numerical integration is carried out for all 
elements in the mesh in which both nodes i and j appear. (There are 16 i-j combinations 

 63



 
evaluated in each quadrilateral element.) The elementwise pieces of the integral for each i-j 
combination are then summed according to (3.23) in order to obtain the value of the integral over 
the whole region. The summation is called the “assembly” process. This element transformation, 
integration of the 16 integrals arising in each element, and summation, makes up a large part of 
the computational effort of a finite-element model and requires the most complex algorithm in a 
finite-element model. It is in this way that the second term of (3.10) is evaluated. More 
information on finite-element integration and assembly may be found in numerical methods texts 
such as Wang and Anderson (1982), Pinder and Gray (1977), or Huyakorn and Pinder (1983). 
The details of this method as applied in SUTRA are given in Chapter 4, “Numerical Methods.” 
 
Cellwise integration of source 
 
The last term of equation (3.10) deals with sources of fluid to the aquifer such as injection wells. 
The volume integral may, as before, be written in x, y, and z coordinates: 
 

  (3.25) 
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where thickness B is introduced because Q* and φi do not vary with z. It is assumed that all fluid 
entering the aquifer within the region of cell i, which surrounds node i, enters at node i. If  

[L

*
iQ

3/s] is defined as the volume of fluid entering cell i per unit time, then Q* [s–1], which is the 
volume of fluid entering the aquifer per unit volume of aquifer per unit time, is given as: 
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This is a cellwise discretization for the source term, Q*. For cell i: 
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Thus, all recharges within cell i due to areal infiltration, well injection or other types are 
allocated to the source at node i. 
 
This completes the spatial integration of the governing equation for the example problem. 
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3.4 Time Discretization of Governing Equation 
 
When the integrated terms of the governing equation are substituted in (3.10), the following 
results: 
 

 ( ) ( ) ( ) NN,1iQQthtI
dt

dh
tVS iIN
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=
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These are NN integrated weighted residual approximations of the governing differential 
equation, one at each node i in the mesh. Because of the summation term in (3.28), the integrated 
approximate equation for a node, i, may involve the values of head, hj(t), at all other nodes in the 
mesh. The other terms in (3.28) involve only values at node i itself, at which the entire relation is 
evaluated. 
 
All the parameters in (3.28) are no longer functions of the space coordinates. Each parameter 
takes on a particular value at each node in the mesh. Some of these values vary with time and a 
particular time for evaluation of these values needs to be specified. In addition, the time 
derivative requires discretization. 
 
Time steps 
 
Time is broken up into a series of discrete steps, or time steps. The length of a time step, ∆t, is 
the difference in time between the beginning and the end of a time step: 
 
    (3.29) n1n

1n ttt −=∆ +
+

 
where ∆tn+1 is the length of the (n+1)th time step, tn is the actual time at the beginning of the 
(n+1)th time step and tn+1 is the actual time at the end of this time step. The time steps are chosen 
to discretize the time domain before a simulation just as a mesh (or “spatial steps”) is chosen to 
discretize space. The time step length may vary from step to step. 
 
The entire spatially integrated governing equation, (3.28), is evaluated at the end of each time 
step, t = tn+l. The time derivative of head in (2.28) is approximated, using a finite-difference 
approximation, as the change in head over a time step, divided by the time step length: 
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In order to simplify the notation, the head at the end of the time step, hi(tn +  ∆tn+1) is denoted 

, and the head at the beginning of the time step h1n
ih +

i(tn) is denoted .  Thus, n
ih

 

 
1n

n
i

1n
ii

t
hh

dt
dh

+

+

∆
−

=    (3.31) 

 
The parameters that depend on time in (3.28), vi(t) and Iij(t), are also evaluated at the time, tn+1, at 
the end of a time step: 
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 ( ) 1n

jtj hth 1n
+=+    (3.32a) 

 
 ( ) 1n

iti VtV 1n
+=+    (3.32b) 

 
 ( ) 1n

ijtij ItI 1n
+=+    (3.32c) 

 
The sources, and Q

iINQ i*, are assumed constant in time for the present example. 
 
Resolution of nonlinearities 
 
The variability in time of cell volume, Vi, and the integral, Iij, depends on the changing thickness 
of the aquifer with time, B(x,y,t). The aquifer thickness at node i at the end of a time step, Bi

n+1, 
is not known until the head at the end of the time step is known, giving the water-table elevation. 
This typifies a nonlinear problem wherein the problem requires values of coefficients in order to 
be solved, but the values of these coefficients depend on the solution to be obtained. This circular 
problem is avoided in this example by using estimates of the coefficient values in the solution. 
An estimate of the head at the end of the next time step is obtained by a linear projection: 
 

 ( 1n
i

n
i

n

1nn
i

proj
i hh

t
t

hh −+ −







∆

∆
+= )  (3.33) 

 
where  is the projected or estimated head at the end of the as-yet-unsolved time step, which 
would have an exact value, . Actually, in addition to projection, SUTRA also employs a 
simple iterative process to resolve nonlinearities. This is described in sections 4.4 and 4.5 under 
the subheading “Temporal discretization and iteration.” 

proj
ih

1n
ih +

 
A projected thickness may then be determined from (3.33) as: 
 
   (3.34) i

proj
i

proj
i

1n
i BASEhBB −=≅+

 
where  is the value of thickness needed to evaluate  and ,  is the estimated 

value of B , and BASE

1n
iB +

n
i

1n
iV + 1n

ijI + proj
iB

1+
i is the value of BASE(x,y) at node i. 

 
Now the spatially integrated equation, (3.28), may be written discretely in time: 
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t

hh
VS iIN

1n
j

1n
ij

NN

1j1n

n
i
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+
+ ∑  (3.35) 

 
where  and  are evaluated based on projected thickness, . 1n

iV + 1n
ijI + proj

iB
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3.5 Boundary Conditions and Solution of Discretized Equation 
 
Matrix equation and solution sequence  
 
The NN relations given by (3.35) may be rearranged and rewritten in matrix form: 
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 (3.36) 

 
By adding the two matrices on the left side, and the vectors on the right side, a matrix equation is 
obtained which may be solved for the model heads at the new time level, tn+1, on each time step: 
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     (3.37) 
 
The solution progresses through time as follows: On a given time step, the nodal heads at the 
beginning of the step are known values and are placed in  in the right-hand-side vector of 
(3.37). The thickness-dependent values are determined based on the projection of B in (3.34) 
using the projected head of (3.33). The integrals and volumes are evaluated and the matrix and 
vector completed. The linear system of equations (3.37) is solved for the nodal heads at the end 
of the current time step using (banded) Gaussian elimination or an iterative sparse matrix 
equation solver. The new heads are then placed on the right side of (3.37) into , and a new 
time step is begun. 

n
jh

n
jh

 
Specification of boundary conditions 
 
Before solving the matrix equation as described above, information about boundary conditions 
must be included. In the case of solving for heads, the boundary conditions take the form of 
either specified fluid fluxes across boundaries which are directly entered in the terms, , or of 
particular head values specified at nodal locations. At a point of fixed head in an aquifer, a 
particular value of fluid inflow or outflow occurs at that point in order to keep the head constant 
when the aquifer is stressed. This is the flux of fluid that is added to the model aquifer in order to 
obtain fixed heads at nodes. 

iINQ
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In order to illustrate how specified heads are implemented in SUTRA, consider the closed 
system of Figure 3.5 in which head at node i, hi, is to have a specified value, hBC, for all time. A 
well is removing water from the system at an internal node. A core of porous medium with 
conductance ν is connected to node i. The head outside the core is held at the specified value, 
hBC. The head at node i, hi, is calculated by the model. Under steady-state conditions, a flow of 

 [L
iBCQ 3/s] enters through the core at node i in order to balance the rate of fluid removal at the 

well. The resulting head at node i depends on the conductance value ν of the core. If ν is very 
small, then a large head drop is required across the core in order to supply fluid at the rate the 
pumping well requires. This results in hi having quite a different value from hBC. If, however, ν 
is very large, then the value of head at node i is very close to hBC, as only a tiny head drop across 
the core supplies the fluid required by the well. Therefore, when the required flux is applied to a 
node through a highly conductive core, the outside of which is held at a specified head value, the 
node responds with a head value nearly equal to that specified. An advantage of specifying head 
this way is that when head at a node in the mesh is fixed, a calculation of the flux entering the 
mesh at this node is obtained at the same time: 
 
 ( )1n

1BCBC hhQ
ii

+−ν=    (3.38) 
 
where Q  is the inflow at node i resulting from the specified head boundary condition, ν is the 
conductance of the “core,” and  is the specified value of head at node i on the boundary. 

iBC

iBCh
 

 

 
 

Figure 3.5. Schematic representation of specified head (or pressure) boundary condition. Specified 
concentration boundary conditions are implemented using an analogous construction. 
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The matrix equation (3.37) may be written in short form as: 
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++∑  (3.39) 

 
wherein an additional flux Q  has been added only to the equations that represent the specified 
head nodes. At such a node, say node A, the equation is: 

iBC
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=∑ ) (3.40) 

 
If ν is very large, then the last term dominates the equation and (3.40) becomes: 
 
    (3.41) 

ABC
1n

A hh ≅+

 
Thus, the specified head is set at node A, but as  and h  are slightly different, a flux may 
be determined from (3.38). 

1n
Ah +

ABC
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DETAILS OF SUTRA 
METHODOLOGY 

 





 

Chapter 4: Numerical Methods 
 
In this section, the numerical methods upon which SUTRA is based are presented in detail. The 
purpose of this presentation is to provide a complete reference for the computer code. 
 
 
4.1 Basis and Weighting Functions 
 
Basis functions, weighting functions and their derivatives are all described in local element 
geometry. In a 2D local coordinate system, every element takes the shape of a two-by-two 
square. The 2D local coordinates, ξ and η, are shown along with a generic local 2D finite 
element in Figure 4.1a. The origin of the local coordinate system is at the center of the element. 
Local node 1 always has local coordinates (ξ, η) = (–1, –1). The other nodes are numbered 
counterclockwise from the first node as shown in Figure 4.1a. 

 
 
   (a)       (b) 

 
Figure 4.1. (a) Quadrilateral 2D finite element in local coordinate system (ξ, η). (b) Hexahedral 3D 
finite element in local coordinate system (ξ, η, ζ). The ζ-axis points directly out of the page. 
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The following one-dimensional (1D) basis functions are defined over the region of the 2D 
element: 
 
 ( ) ( ξ1ξΞ 2

1 −=− )    (4.1) 
 
 ( ) ( ξ1ξΞ 2

1 +=+ )   (4.2) 
 
 ( ) ( η−=ηΗ − 12

1 )    (4.3) 
 
 ( ) ( η+=ηΗ + 12

1 )    (4.4) 
 
These linear one-dimensional basis functions are continuous in ξ and η and range between zero 
and one as ξ and η range between +1 to –1. The one-dimensional functions are combined to 
create the bilinear basis functions used in 2D SUTRA simulations: 
 
    (4.5) ( ) −− ΗΞ=ηξΩ ,1

 
    (4.6) ( ) −+ ΗΞ=ηξΩ ,2

 
    (4.7) ( ) ++ ΗΞ=ηξΩ ,3

 
    (4.8) ( ) +− ΗΞ=ηξΩ ,4

 
The 2D bilinear basis functions, when defined in the local element coordinate system, are 
denoted as Ωi(ξ, η), i=1,2,3,4. There is one basis function defined for each node. 
 
The basis function Ωi, defined for node i, has a value of one at the node and a value of zero at the 
other nodes. The surface representing Ωi(ξ, η) over an element is curved due to the product of 
ξ and η in equations (4.5) through (4.8). A trajectory in the surface parallel to an element side, 
however, is a perfectly straight line as shown in Figure 4.2. This is borne out in the derivatives of 
the bilinear basis functions, which depend on only one space coordinate: 
 

 −− Ξ−=
η∂

Ω∂
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ξ∂
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2
11

2
11 H   (4.9) 

 

 +− Ξ−=
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12

2
12 H   (4.10) 

 

 ++ Ξ+=
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Ω∂
+=

ξ∂
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2
13

2
13 H   (4.11) 

 

 −+ Ξ+=
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−=

ξ∂
Ω∂

2
14

2
14 H   (4.12) 
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Figure 4.2. Perspectives of the 2D basis function Ωi(ξ, η) at node i. 
 
Asymmetric weighting functions are defined for use in a Galerkin-Petrov method (one version of 
which is described in Huyakorn and Pinder, 1983). These are not applied for nodewise 
discretization of parameters, but rather for weighting in the volume integrals of the governing 
equation. They may be used to give an “upstream weighting” to the advective flux term in the 
transport equations or to provide “upstream weighting” to the fluid flux term in the fluid mass 
balance when the medium is unsaturated. In 2D, the asymmetric functions are defined as follows: 
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 ( ) ( ) ( )∗
−

∗
− Η−ΗΞ−Ξ=ηξ,θ1   (4.13) 

 
 ( ) ( ) ( )∗

−
∗

+ Η−ΗΞ+Ξ=ηξ,θ2   (4.14) 
 
 ( ) ( ) ( )∗

+
∗

+ Η+ΗΞ+Ξ=ηξ,θ3   (4.15) 
 
 ( ) ( ) ( )∗

+
∗

− Η+ΗΞ−Ξ=ηξ,θ4   (4.16) 
 
where: 
 
    (4.17) +−ξ

∗ ΞΞ=Ξ a3
 
    (4.18) +−η

∗ ΗΗ=Η a3
 
The spatial derivatives are: 
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η
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14

ξ2
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The parameters aξ and aη determine the amount of asymmetry (or upstream weight) in each 
coordinate direction. When these parameters have a value of zero, then (4.13) through (4.22) 
reduce to the symmetric 2D basis functions and their derivatives, (4.5) through (4.12). The 
values of aξ and aη depend on location in the element: 
 

 ( ) ( ) 









=ηξ ξ

ξ
localv
v

UP,a   (4.23) 

 

 ( ) ( ) 









=ηξ η

η
localv
v

UP,a   (4.24) 

 
where UP is the fractional strength of upstream weighting desired (chosen by the model user), 
vξ(ξ, η) and vη(ξ, η) are the components of fluid velocity given in terms of local element 
coordinates, and vlocal(ξ, η)is the magnitude of fluid velocity given in terms of local 
coordinates. Each velocity component may vary in value throughout the element. A description 
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of the calculation of fluid velocity is given in section 4.6, “Consistent Evaluation of Fluid 
Velocity.” 
 
Note that the 2D basis functions, weighting functions and their derivatives are calculated by the 
SUTRA subroutine “BASIS2”. 
 
In 3D SUTRA simulations, the basis functions depend on three local coordinates, ξ, η, and ζ. As 
in 2D, the origin of the local coordinate system is at the center of the element. The local node 
numbering in 3D is illustrated in Figure 4.1b. Local node one always has local coordinates 
(ξ, η, ζ) = (–1, –1, –1). The other nodes are numbered as follows, assuming a right-handed 
coordinate system. If the element is viewed from the outside, looking through one face, such that 
the element face farthest away has node 1 as its lower-left-hand corner, then nodes 2 – 4 are the 
remaining nodes in that element face, proceeding counterclockwise from node 1. Nodes 5 – 8 are 
then located on the nearest element face (the one being looked through and opposite the first 
face), such that nodes 5, 6, 7, and 8 are connected by element edges to nodes 1, 2, 3, and 4, 
respectively. 
 
The following one-dimensional basis functions are defined over the region of the 3D element: 
 
 ( ) ( ξ−=ξΞ − 12

1 )    (4.25) 
 
 ( ) ( ξ+=ξΞ + 12

1 )    (4.26) 
 
 ( ) ( η−=ηΗ − 12

1 )    (4.27) 
 
 ( ) ( η+=ηΗ + 12

1 )    (4.28) 
 
 ( ) ( ζ1ζΨ 2

1 −=− )   (4.29) 
 
 ( ) ( ζ1ζΨ 2

1 +=+ )    (4.30) 
 
These linear one-dimensional basis functions are continuous in ξ, η, and ζ, and range between 
zero and one as ξ, η, and ζ range between +1 to –1. The one-dimensional functions are combined 
to create the trilinear basis functions used in 3D SUTRA simulations: 
 
   (4.31) ( ) −−−= ΨΗΞζ η,ξ,Ω1

 
   (4.32) ( ) −−+= ΨΗΞζ η,ξ,Ω 2

 
   (4.33) ( ) −++= ΨΗΞζ η,ξ,Ω 3

 
   (4.34) ( ) −+−= ΨΗΞζ η,ξ,Ω 4

 
   (4.35) ( ) +−−= ΨΗΞζ η,ξ,Ω 5

 

 77



 
   (4.36) ( ) +−+= ΨΗΞζ η,ξ,Ω 6

 
   (4.37) ( ) +++= ΨΗΞζ η,ξ,Ω 7

 
   (4.38) ( ) ++−= ΨΗΞζ η,ξ,Ω 8

 
The 3D trilinear basis functions, when defined in the local element coordinate system, are 
denoted as Ωi(ξ, η, ζ), i=1,…,8. There is one basis function defined for each node. 
 
The basis function Ωi, defined for node i, has a value of one at the node and a value of zero at the 
other nodes. It varies linearly along the straight element edges that connect node i to its 
neighbors and has curvature in 3D analogous to that described above for 2D elements. The 
derivatives of the trilinear basis functions are as follows: 
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In 3D, the asymmetric functions are used to provide “upstream weighting” in a manner 
analogous to that described above for 2D. These functions are defined as follows: 
 
 ( ) ( ) ( ) ( )∗

−
∗

−
∗

− −−−= ΨΨΗΗΞΞζ η,ξ,θ1  (4.47) 
 
 ( ) ( ) ( ) ( )∗

−
∗

−
∗

+ −−+= ΨΨΗΗΞΞζ η,ξ,θ2  (4.48) 
 
 ( ) ( ) ( ) ( )∗

−
∗

+
∗

+ −++= ΨΨΗΗΞΞζ η,ξ,θ3  (4.49) 
 
 ( ) ( ) ( ) ( )∗

−
∗

+
∗

− −+−= ΨΨΗΗΞΞζ η,ξ,θ4  (4.50) 
 
 ( ) ( ) ( ) ( )∗

+
∗

−
∗

− +−−= ΨΨΗΗΞΞζ η,ξ,θ5  (4.51) 
 
 ( ) ( ) ( ) ( )∗

+
∗

−
∗

+ +−+= ΨΨΗΗΞΞζ η,ξ,θ6  (4.52) 
 
 ( ) ( ) ( ) ( )∗

+
∗

+
∗

+ +++= ΨΨΗΗΞΞζ η,ξ,θ7  (4.53) 
 
 ( ) ( ) ( ) ( )∗

+
∗

+
∗

− ++−= ΨΨΗΗΞΞζ η,ξ,θ8  (4.54) 
 
where 
 
    (4.55) +−ξ

∗ ΞΞ=Ξ a3
 
    (4.56) +−

∗ = ΗΗ3aΗ η

 
    (4.57) +−

∗ = ΨΨ3aΨ ζ

 
The spatial derivatives are as follows: 
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The parameters aξ, aη, and aζ determine the amount of asymmetry (or upstream weight) in each 
coordinate direction. When these parameters have a value of zero, then (4.47) through (4.65) 
reduce to the symmetric 3D basis functions and their derivatives, (4.31) through (4.46). The 
values of aξ, aη, and aζ depend on location in the element: 
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where UP is the fractional strength of upstream weighting desired (chosen by the model user), 
vξ(ξ, η, ζ), vη(ξ, η, ζ), and vζ(ξ, η, ζ) are the components of fluid velocity given in terms of local 
element coordinates, and vlocal(ξ, η, ζ)is the magnitude of fluid velocity given in terms of 
local coordinates. 
 
Note that the 3D basis functions, weighting functions and their derivatives are calculated by the 
SUTRA subroutine “BASIS3”. 
 
 
4.2 Coordinate Transformations 
 
During calculations for the finite-element mesh and during integral evaluations, transformations 
are required between the global (x,y[,z]) coordinate system, in which an element may have an 
arbitrary size and quadrilateral (2D) or generalized hexahedral (3D) shape, and the local (ξ,η[,ζ]) 
coordinate system in which each element is a two-by-two square (2D) or two-by-two-by-two 
cube (3D). Transformations are required in each direction. The transformation employs the basis 
functions to provide a linear remapping in each coordinate direction. The Jacobian matrix [J] is 
calculated separately for each element that requires transformation and may vary from point to 
point in an element. In 3D, the Jacobian matrix is 
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The numbered subscripts refer to the local element numbering (which is shown in Figure 4.1). 
 
The Jacobian matrix is used to transform derivatives of basis functions from the global to the 
local coordinate systems and the reverse: 
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where: 
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The subscript j refers to any one of the eight nodes in a 3D element (four nodes in a 2D element), 
and φj refers to the global basis function as defined for the jth node in an element. The same 
transformations apply to derivatives of the asymmetric weighting functions, which are denoted 
ωj in global coordinates. 
 
The equations above are presented in 3D. For 2D simulations, only terms involving x, y, ξ, η, 
and node subscripts 1 through 4 are relevant; the remaining terms should be left out to obtain the 
2D forms. 
 
In (4.71), [J-1] is the inverse Jacobian matrix, defined such that 
 
    (4.73a) ]I[]J][J[ 1 =−

 
where [I] is the identity matrix, whose diagonal elements are all equal to one and whose off-
diagonal elements are all equal to zero.  In 2D, [J-1] takes the form  
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where det J is the determinant of the Jacobian, given in 2D by 
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   (4.74) 21122211 JJJJJdet −=
 
The determinant may vary bilinearly over a 2D element.  A detailed discussion of inverse 
matrices and matrix determinants in 2D and 3D can be found in most linear algebra texts. 
 
In 2D, differential elements of area, dA, are transformed between local and global coordinate 
systems as 
 
   (4.75) ( ) ηξ== ddJdetdydxdA
 
In 3D, differential elements of volume, dV, are transformed as 
 
   (4.76) ( ) dζdηdξJdetdzdydxdV ==
 
Note that the Jacobian matrix, the determinant of the Jacobian and the derivatives of the basis 
functions in local and global coordinates are calculated in SUTRA subroutine “BASIS2” for 2D 
simulations and in subroutine “BASIS3” for 3D simulations. 
 
 
4.3 Gaussian Integration 
 
Gaussian integration is a method by which exact integration of polynomials may be carried out 
through a simple summation of point values of the integrand. The method is: 
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where f(τ) is the function to be integrated between τ = –1 and τ = +1. KG is the Gauss point 
number, NP is the total number of Gauss points, GKG is a constant, and τKG is the location of the 
KGth Gauss point. An exact integration is guaranteed by the sum in (4.77) if n Gauss points are 
used for a polynomial f(τ) of order (2n–1). For evaluation of integrals that arise in the SUTRA 
methodology, only two Gauss points are used in a given coordinate direction, as the integrands 
encountered are usually of order three or less. In this case, the constants, GKG have a value of one 
and (4.77) simplifies to: 
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The values of τKG for the two Gauss points are ± 3–1/2 (≈ ±0.577350269189626). 
 
In 2D, the need to define a two-by-two element in local coordinates is apparent here. Gaussian 
integration is done over a range of two, from –1 to +1. In order to integrate a term of the 
differential governing equation over an arbitrary quadrilateral element in the mesh, the limits of 
the integral must first be transformed to values of –1 and +1, that is, to local coordinates. When 
integrating a double integral over x and y, both integrals must be transformed to have limits of –1 
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and +1, and two Gauss points are needed in each coordinate direction. These are defined as 
shown in Figure 4.3. 
 

 
Figure 4.3. 2D finite element in local coordinate system with Gauss points. 

 
A 2D example, evaluating the integral of (3.24), follows. The integral to evaluate is 
 
 ( )∫ ∫ φ∇⋅φ∇=

L Lx y
iijij dxdyBA   (4.79) 

 
where xL and yL indicate that the integral is over the area of an element L in global coordinates. 
First, the (x,y) integral is converted to an integral in local coordinates (ξ, η) through use of the 
Jacobian: 
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The values of φ∇  are in global coordinates and are obtained by transformation of derivatives 
calculated in local coordinates. 
 
Gaussian integration is applied independently to each integral: 
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or equivalently as a single summation: 
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where Kξ and Kη refer to Gauss point locations in the ξ and η directions, and where ξKG and ηKG 
refer to the four Gauss points arising in (4.81) as depicted in Figure 4.3. Thus, in order to 
evaluate the integral (4.79) over a given element, only four values of the integrand need to be 
summed as given in (4.82), with one value determined at each of the four Gauss points. 
 
In the case where a 2D element is a nonrectangular quadrilateral with variable thickness B, the 
polynomial to be integrated in (4.80) is of fourth order as each of the terms may vary linearly in 
the same direction. Otherwise, it is always of third order or less, and two-point Gauss integration 
provides exact results. 
 
The procedure for integration in 3D is analogous to that in 2D.  When integrating a triple integral 
over x, y, and z, all three integrals must be transformed to have limits of –1 and +1, and two 
Gauss points are needed in each of the three coordinate directions, making a total of 8 Gauss 
points. 
 
Note that the summation over the Gauss points (as in (4.82)) is carried out by SUTRA subroutine 
“ELEMN2” in 2D and subroutine “ELEMN3” in 3D for each element in the mesh and for each 
integral that requires evaluation. 
 
 
4.4 Numerical Approximation of SUTRA Fluid Mass Balance 
 
The governing equation representing the SUTRA fluid mass balance, (2.24), is modified by the 
addition of a point source term which is used to insert points at which pressure is specified. This 
is done as described in text referring to relation (3.38). 
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The last term is the source term arising from a specified pressure condition, wherein νp is a 
“conductance” and  is the externally specified pressure boundary condition value. When ν( )tp

BC p 
is set to a sufficiently large value, the last term becomes much larger than the others in (4.83), 
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and , which is the desired boundary condition. Relation (4.83) is numerically 
approximated in the following sections. 
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Spatial integration 
 
When the expression for Op(p,U) is approximated through nodewise, elementwise and cellwise 
discretizations, it no longer exactly equals zero. The approximate expression, 〈〈Op(p,U)〉〉, equals 
a spatially varying residual, Rp(x,y[,z],t), as shown for a 2D example in (3.8). A weighted 
residual formulation may be written as: 
 
 ( ) ( ) NN1,i0dVz]y[,x,WUp, ip ==  (4.84) 

where Wi(x,y[,z]) is the weighting function in global coordinates chosen to be either the basis 
function, φi(x,y[,z]) or the asymmetric weighting function, ωi(x,y[,z]), depending on the term of 
the equation. Relation (4.83) is approximated discretely and substituted for 〈〈Op(p,U)〉〉 in (4.84). 
The resulting set of integral terms is evaluated, one term at a time, in the following paragraphs. 
 
The first term is an integral of the pressure derivative: 
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where the term in square brackets is discretized cellwise, with one value of the term for each of 
the NN cells in the mesh, and the weighting function is chosen to be the basis function (written 
in global coordinates) The double angle brackets  surrounding a term indicate that it has 
been approximated in one of the three ways. Because the cellwise-approximated term is constant 
for a node i, it is removed from the integral, leaving only the basis function to be integrated. The 
volume integral of φi(x,y[,z]) gives the volume Vi of cell i, which reduces to (3.15) for 2D 
simulations. The term (4.85) becomes: 
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The second term of the expanded form of (4.84) is also a time derivative, which is approximated 
cellwise: 
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The third term of expanded relation (4.84), which involves the divergence of fluid flux, is 
weighted with the asymmetric function. The asymmetry is intended for use only in unsaturated 
flow problems to maintain solution stability when the mesh has not been designed fine enough to 
represent sharp saturation fronts. In general, the usual symmetric function is used for weighting 
this flux term even for unsaturated flow, but the term is developed with the asymmetric function 
in order to provide generality. Green’s Theorem (3.17) is applied, yielding: 
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wherein the terms in double angle brackets are approximated discretely as described below, n is 
the unit outward normal to the 3D surface bounding the region to be simulated, and Γ is the 
surface of the region. The asymmetric weighting function in global (rather than local) 
coordinates is denoted, ωi(x,y[,z]). The first term on the right of (4.88) is exactly the fluid mass 
flux (see Darcy’s law, relation (2.19)) out across the region’s boundary at node i,  [M/s]: ( )tq
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This term is used to specify fluid flows across boundaries in SUTRA. Note that an inflow, 

, is q . ( )tq
iIN ii OUTIN q−=

 
The second term on the right of (4.88) is approximated using a combination of elementwise and 
nodewise discretizations. The approximation of (∇p – ρ g ) requires particular attention and is 
discussed in section 4.6, “Consistent Evaluation of Fluid Velocity.” The permeability tensor 
appearing in (4.88) has nine components in 3D:  
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wherein k

=
   is discretized elementwise as indicated by Lk .  In 2D simulations, (∇p – ρ g ) is 

always zero in the third spatial direction, and only the four components of the permeability 
tensor that do not involve the z-coordinate are relevant. The pressure is discretized nodewise: 
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Relative permeability, kr, depends on saturation, which in turn depends on pressure. Relative 
permeabilities are evaluated at each Gauss point during numerical integration depending on the 
saturation (and pressure) at the Gauss point. Viscosity is evaluated at each Gauss point for 
energy transport as a function of nodewise discretized temperature, and is constant for solute 
transport. 
 
Density, ρ, when it appears in the permeability term, is also evaluated at each Gauss point 
depending on the nodewise discretized value of U at the Gauss point. The density appearing in 
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product with the gravity term is expressly not evaluated in this usual manner. A particular 
discretization is used to maintain consistency with the ∇p term, as described in section 4.6, 
“Consistent Evaluation of Fluid Velocity”. This consistently evaluated ρ g  term is denoted 
〈〈ρ g 〉〉* (see relation (4.153)). 
 
The second term on the right of (4.88) is thus approximated as: 
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where 〈〈 Lk 〉〉 indicates an elementwise discretized permeability tensor, 








µ
ρrk  indicates the 

value of the term based on nodewise discretized values of p and U (which is not the same as 
discretizing the term in a nodewise manner), and 〈〈ρ g 〉〉* indicates a discretization of (ρ g ) 
consistent with the discretization of ∇p. 
 
The last two terms of (4.83) are approximated cellwise with a basis function for weighting: 
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The cellwise discretizations that are employed in the above evaluations are 
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where Vi is the volume of cell i, Qi(t) [M/s] is the total mass source to cell i, QPBC (M/L3 s) is the 
fluid mass source rate due to the specified pressure, and [L s] is the pressure-based 
conductance for the specified pressure source in cell i. The conductance is set to zero for nodes at 
which pressure is not specified (so that Q

ipν

PBC=0) and to a high value at nodes where pressure is 
specified.  
 
By combining and rearranging the evaluations of approximate terms of (4.84), the following 
weighted residual relation is obtained in 3D: 
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where: 
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For 2D simulations, (4.99) and (4.100) are written as 
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The thickness of the mesh, B(x,y), is evaluated at each Gauss point according to a nodewise 
discretization: 
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where Bi is the mesh thickness at node i. Note that mesh thickness is fixed and may not vary in 
time as was allowed for illustrative purposes in Chapter 3, “Fundamentals of Numerical 
Algorithms.” 
 
The only integrals requiring Gaussian integration are BFij and DFi. Note that these are evaluated 
in SUTRA subroutine ELEMN2 (for 2D) or ELEMN3 (for 3D) in an element-by-element 
manner. The other terms, except for those involving , are evaluated cellwise (one for each 
node) by subroutine NODAL. The specified pressure terms are evaluated by subroutine BC. 

ipν
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Temporal discretization and iteration 
 
The time derivatives in the spatially discretized and integrated equation are approximated by 
finite differences. The pressure term is approximated as: 
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and 
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The new or current time step, ∆tn+l, begins at time tn and ends at time tn+1. The previous time 
step, for which a solution has already been obtained at time tn, is denoted at ∆tn. 
 
The term in (4.96) involving the time derivative of concentration or temperature, dU/dt, makes 
only a very small contribution to the fluid mass balance. For solution over the present time step, 
∆tn+l, this derivative is evaluated using information from the previous time step, as these values 
are already known: 
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This approximation gives a simple method of accounting for this small contribution to the fluid 
mass balance. 
 
All other terms in (4.96) are evaluated at the new time level tn+1 for solution of the present time 
step, ∆tn+1, except for the density in the consistently discretized 〈〈ρ g 〉〉* term. The density is 
evaluated based on U(tn), the value of U at the beginning of the present time step. Because 
coefficients depend on the yet unknown values of p and U at the end of the time step, one or 
more iterations may be used to solve this nonlinear problem. On the first iteration, or when only 
one iteration per time step is used, coefficients are based on a projected value of p and U. 
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These projections estimate the p and U values at a node i,  and , at the end of the 
present time step, ∆t

proj
ip proj

iU
n+1, based on linear extrapolation of the two previous values of p and U. All 

p and U dependent coefficients (except 〈〈ρ g 〉〉*) in (4.96) through (4.102) are estimated at time 
level tn+1. These coefficient values are based on the most recent values of p and U, be they 
projections or solutions to the previous iteration. Iterations end when the maximum change in p 
and U at any node in the mesh falls below user-specified criteria of absolute change in p and U. 
 
The weighted residual relations (4.96) may thus be written in a form which allows for solution of 
pressures at nodes, , at the end of the present time step: 1n

ip +

 

 
( ) ( ) NN1,i

dt
dUCFp

∆t
AFDFqpνQ

pνBFpp
∆t
AF

n
i1n

i
n
i

1n

1n
i*1n

i
1n

IN
1n

BCp
1n

i

1n
ip

NN

1j

1n
ij

1n
i

1n
i

1n

1n
i

iii

i

=





+








++++=

++








+

+

+
++++

+

=

+++

+

+

∑
 (4.110) 

 
where the superscript involving (n) or (n+l) indicates level of time evaluation. The term with 
level (n+l)* indicates that the 〈〈ρ g 〉〉* term is evaluated at the (n) time level on the first iteration, 
and at the most recent level on subsequent iterations. The other coefficients are evaluated at the 
(n+l) time level by projection on the first iteration, and at the most recent level on subsequent 
iterations. 
 
Boundary conditions, fluid sources and sinks 
 
Specified pressures are obtained through the cellwise addition of a fluid flux (see Figure 3.5), 

 [M/s] with reference to (4.93): 
iBCQ
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For a cell in which is specified as a large number, this flux term dominates the fluid mass 

balance and , achieving a specified pressure at the node representing cell i. Note that 
specified pressure may change each time step. For cells in which pressure is not specified, is 
set to zero, and no fluid is added to the cell by (4.111). 
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Both fluid sources, Q , and fluid inflows across region boundaries, q , are specified 
cellwise. They directly add fluid mass to the node in cell i. Thus, fluid sources and boundary 
inflows are indistinguishable in the model. Fluid sources and flows across boundaries are both 
accounted for by the vector Q in SUTRA, and are referred to as fluid sources. Thus the term 

 in (4.110) may be dropped, and the definition of  may be generalized to include the 
boundary flows. 
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The form of the discretized fluid mass balance implemented in SUTRA is as follows: 
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wherein δij is the Kronecker delta: 
 

    (4.112a) 
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4.5 Numerical Approximation of SUTRA Unified Solute Mass and Energy Balance 
 
The governing equation representing the SUTRA unified energy and solute mass balance (2.52) 
is modified by the addition of a point source term that arises due to fluid inflows and outflows at 
points of specified pressure: 
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(4.113) 

 
The last term is the solute mass or energy source due to fluid inflow at a point of specified 
pressure, QPBC [M/L3 s] is the fluid mass source rate given by (4.95), and UBC is the 
concentration or temperature of the flow. For outflow, UBC = U, and the term goes to zero. 
Relation (4.113) is numerically approximated in the following sections. 
 
Spatial integration 
 
When the expression for Ou(U) in (4.113) is approximated through nodewise, elementwise and 
cellwise discretizations, it no longer exactly equals zero. The approximate expression , 〈〈Ou(U)〉〉, 
equals a spatially varying residual, Ru(x,y[,z],t), as shown for a 2D example in (3.8). A weighted 
residual formulation may be written as: 
 
 ( ) ( ) NN,1i0dVy,xWUO i

V
u ==∫  (4.114) 

 
where Wi(x,y[,z]) is the weighting function, chosen to be either the basis function, φi(x,y[,z]) or 
the asymmetric weighting function, ωi(x,y[,z]), depending on the term of the equation. Relation 
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(4.113) is discretized and the approximation is substituted for 〈〈Ou(U)〉〉 in (4.114). The resulting 
set of integral terms is evaluated, one term at a time, in the following paragraphs. 
 
The first term is an integral of the temperature or concentration time derivative: 
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where the term in square brackets is discretized cellwise, and the weighting function is the basis 
function (written in global coordinates). As the term in double angle brackets has constant value 
over a cell, i, the integral contains only the basis function and equals the cell volume, Vi, which 
reduces to (3.15) for 2D simulations. Thus the term is 
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The second integral is 
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where the asymmetric weighting function is chosen to allow the use of “upstream weighting” for 
this term representing advective transport. “Upstream weighting” is intended for use only when 
the finite-element mesh has been designed too coarse for a particular level of dispersive and 
advective transport. The asymmetric function adds dispersion in an amount dependent on 
element length in the flow direction. As a result, it changes the effective dispersion and thus 
changes the physics of the problem being solved. This term is written in general to allow 
upstream weighting, but simplifies to weighting with a basis function when the upstream weight 
(UP in (4.23) and (4.24) for 2D; (4.66) through (4.68) for 3D) is set to zero. Thus, in order not to 
alter the physics for most simulations, this term will have symmetric weighting. 
 
The coefficients in this term (except velocity) are evaluated at each Gauss point and depend on 
nodewise discretization of p and U, as indicated by the notation { } . Porosity is discretized 
nodewise. Nodewise discretizations of ε and U are written: 
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The velocity is evaluated at each Gauss point during numerical integration in a particular way 
that depends on consistent discretization of ∇p and ρg terms in Darcy’s law. This consistent 
approximated velocity is denoted 

*
v . Thus, the term (4.117) is evaluated as 
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Specific heat, cw, is a constant. 
 
The third term of expanded relation (4.114) is 
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where the basis function weights the integral. Green’s Theorem (3.17) is applied to (4.121) 
resulting in 

 

 

( ) ( )[ ] ( )

( ) ( )[ ]∫

∫
φ∇⋅∇⋅−+++

φ⋅∇⋅−++−

V
iswww

Γ
iswww

dVUIσε1DIσεSρc

dΓz]y[,x,nUIσε1DIσεSρc
 (4.122) 

 
The first term represents the diffusive/dispersive flux of solute mass or energy out across a 
system boundary in the region of node i. This term is denoted, 

iOUTψ . An influx would be 
 or ψ . The second term is based on nodewise discretization of U. The coefficients ρ 

and S
iOUTψ−

iNI

w are evaluated at Gauss points based on nodewise discretization of U and p, as indicated 
by the notation { } . Porosity, ε, is discretized nodewise as in (4.118), and cw, σw and σs are 
constants. The dispersion tensor, D , is evaluated at each Gauss point according to equations 

(2.41) and (2.42). Velocities used in this evaluation are the consistent values, 
*

v , and 

dispersivities, αL and αT1 [and αT2], are discretized elementwise except that αL and αT1 [and αT2] 
are evaluated depending on the velocity direction at each Gauss point for the anisotropic media 
model. The approximated D  is denoted D . Thus, the term (4.121) is evaluated as: 
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The remaining terms in (4.114) are discretized cellwise with the basis function as the weighting 
function and with coefficients Us, Sw and ρ depending on the nodal values of p and U: 
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where 
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The term evaluated in (4.126) is nonzero only for solute transport, and the value of Us is given 
for solute transport by the adsorption isotherms in the form: 
 
    (4.131) RLss sCsCU +==
 
where sL and sR are defined in section 4.7, “Temporal Evaluation of Adsorbate Mass Balance.” 
In the above cellwise relations, cw, ρs, , and , are constant, and , , sw

1γ s
1γ w

oγ s
oγ L, and sR may vary 

cellwise and with time. 
 
By combining and rearranging the evaluations of integrals in expanded relation (4.114) and the 
definition (4.131), the following NN spatially discretized weighted residual relations are 
obtained in 3D:  
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where 
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For 2D simulations, (4.134) and (4.135) reduce to 
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The thickness of the mesh, B(x,y), is evaluated at each Gauss point according to (4.103). 
 
The only integrals requiring Gaussian integration are DTij and BTij. Note that these are evaluated 
in SUTRA subroutine ELEMN2 (for 2D) or ELEMN3 (for 3D) in an element-by-element 
manner. The remaining terms that do not involve QBC are evaluated cellwise by SUTRA 
subroutine NODAL. The flux terms arising from specified pressure (those with QBC) are 
evaluated by subroutine BC. 
 
Temporal discretization and iteration 
 
The time derivative in the spatially discretized and integrated equation is approximated by finite 
differences: 
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All terms in (4.132) are evaluated at the new time level, tn+1, except the velocity in (4.134) or 
(4.138) and the dispersion tensor (which involves velocity) in (4.135) or (4.139), which are 
lagged (based on values from previous time steps, as described just below) on the first iteration. 
Because coefficients depend on the yet unknown values of p and U at the end of the time step, 
one or more iterations may be used to solve this nonlinear problem. On the first iteration, and 
when only one iteration per time step is used, coefficients are based on a projected value of p and 
U as given by (4.108) and (4.109). On subsequent iterations, coefficients are based on the most 
recent value of p and U. Iterations end when the convergence criteria are satisfied. 
 
On the first iteration, and when only one iteration per time step is used, the velocities are 
evaluated based on   and ρ . This is because the pressure gradient in the velocity 
calculation, 

n
ip , 1-n

iU 1-n
i

∇pn, is based on pressures calculated when the fluid density was ρn-1. On subsequent 
iterations, velocities are calculated using the pressure solution for the most recent iteration 
together with the densities resulting from the previous iteration upon which the most recent 
pressure solution was based. No spurious velocities, which arise from mismatched p and ρ, are 
generated this way. The flux term, QBC, arising from the specified pressures is evaluated on the 
first iteration at the beginning of the time step in terms of  and p . On subsequent iterations, 

it is based on the most recent pressure solution and . 

n
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The relations (4.132) may thus be written in a form which allows for solution of concentration or 
temperature at nodes, U , at the end of the present time step: 1n
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(4.142) 

 
The (n+1)* level indicates that velocity and QBC are evaluated on the first iteration at the previous 
time step level (n) and on subsequent iterations, at the most recent iteration level of the present 
time step. Other coefficients are evaluated at the (n+1) time level by projection on the first 
iteration, and then at the most recent iteration level on subsequent iterations. 
 
Boundary conditions, energy or solute mass sources and sinks 
 
Specified temperatures or concentrations at nodes are obtained numerically by adding the 
following source term to the right side of (4.142) for all nodes: 
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where ψ  is a source of energy [E/s] or solute mass [M1n
BCi

+
s/M·s], 

iUν  is the user-specified 
conductance value (for energy or solute flux through a hypothetical core - see Figure 3.5) which 
is nonzero only for nodes, k, at which temperature or concentration is specified, and  is the 
user-specified value of temperature or concentration at time, t

1n
UBCk

U +

n+l and at node k. 
 
Source boundary conditions for U arise whenever a fluid source Qi is specified. These may be 
either point sources of fluid or fluid flows across the boundaries. These fluid inflows must be 
assigned concentration or temperature values,  which may change with each time step. 
Note that these sources are evaluated in SUTRA subroutine NODAL. Outflows of fluid result in 
the disappearance of the source term from the transport equation because the sink and aquifer 
have the same U-value ( ). 

1*n
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Source boundary conditions for U may arise at points of specified pressure when an inflow  

occurs at such a point. A value of U must be specified for such fluid inflows as . These 
values may change with each time step. This source term for U disappears for outflow at a point 
of specified pressure. Note that specified pressure sources are evaluated in SUTRA subroutine 
BC. 

iBCQ
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A source or sink at a boundary due to diffusion or dispersion appears in (4.122): 
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For solute transport, this term may represent molecular diffusion and dispersion of solute mass 
across a boundary. For energy transport, this term represents heat conduction and thermal 
dispersion across a boundary. This heat or solute flux is a user-specified value, which may 
change each time step. If the term is set to zero, it implies no diffusion and no dispersion across a 
boundary for solute transport, or for energy transport, it implies perfect thermal insulation and no 
dispersion across a boundary. For an open boundary across which fluid flows, this term is not 
automatically evaluated by SUTRA. If no user-specified value exists at an open boundary, then 
this term is set to zero. This implicitly assumes that the largest part of solute or energy flux 
across an open boundary is advectively transported rather than diffusively or dispersively 
transported. In cases where this assumption is inappropriate, the code may be modified to 
evaluate this term at the new time level depending on the value of Un+1. 
 
The form of the discretized unified energy and solute mass balance equation, which is 
implemented in SUTRA, is as follows: 
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wherein δij is the Kronecker delta. 
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4.6 Consistent Evaluation of Fluid Velocity 
 
Fluid velocity is defined by equation (2.19) as 

 ( gp
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v
w

r ρ−∇⋅







µε

−= )  (4.146) 

This relation strictly holds true at a point in space. In order for the relation to hold true when 
discretized, the terms ∇p and ρ g  must be given the same type of spatial variability. This avoids 
generation of spurious velocities, which would be caused by local mismatching of the discretized 
pressure gradient term and density-gravity term. For example, in a hydrostatic system where 
densities vary spatially, ∇p must equal ρ g  to yield a zero vertical velocity. However, if ∇p and 
ρ g  do not locally cancel because of the discretizations chosen, then erroneous vertical velocities 
are generated. 
 
Such an error would occur over an element where ∇p is allowed only a single constant value in a 
vertical section of the element and ρ is allowed to vary linearly in the vertical direction. This is 
the case in a standard finite-element approximation wherein both p and U vary linearly in the 
vertical direction across an element. Linear change in p implies a constant value ∇p, while linear 
change in U implies a linear change in the value of ρ according to (2.3) or (2.4). Thus, a standard 
finite-element approximation over a bilinear element results in inconsistent approximation in the 
vertical direction for ∇p and ρ g : constant ∇p and linearly varying ρ. This inconsistency 
generates spurious vertical velocities, especially in regions of sharp vertical changes in U. A 
consistent approximation of velocity is one in which ∇p and ρ g  are allowed the same type of 
spatial variability, and further, are evaluated at the same time level. 
 
A consistent evaluation of velocity is required by the transport solution in (4.134) or (4.138) and 
in the evaluation of the dispersion tensor in (4.135) or (4.139), where velocity is required in each 
element, in particular, at the Gauss points for numerical integration. In addition, a consistent 
evaluation of the ρ g  term is required at the Gauss points in each element for the fluid mass 
balance solution in the integral shown in (4.100) or (4.102).  
 
The coefficients for calculation of velocity in (4.146) are discretized as follows: Permeability, k, 
is discretized elementwise; porosity, ε, is discretized nodewise. Unsaturated flow parameters, kr 
and Sw, are given values depending on the nodewise-discretized pressure according to relations 
(2.8) and (2.21). Viscosity is either constant for solute transport or is given values depending on 
nodewise-discretized temperature according to (2.5). 
 
To complete the discretization of velocity, values in global coordinates at the Gauss points are 
required for the term (∇p - ρ g ). Whenever this term is discretized consistently in local element 
coordinates (ξ, η [,ζ]), a consistent approximation is obtained in global coordinates for any 
arbitrarily oriented quadrilateral (2D) or hexahedral (3D) element. The remainder of this section 
presents a consistent approximation for this term. 
 
Consistent discretization in local coordinates is obtained when the spatial dependence of ∂p/∂ξ 
and ∂p/∂η [and ∂p/∂ζ] is of the same type as that of ρgξ and ρgη [and ρgζ]. Because the 
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discretization for p(ξ, η [,ζ]) has already been chosen to be bilinear (2D) or trilinear (3D), it is 
the discretization of the ρ g  term, in particular, that must be adjusted. First, in the following, a 
discretization of the ρ g  term is presented which is consistent with the discretization of ∇p in 
local coordinates, and then both ∇p and ρ g  are transformed to global coordinates while 
maintaining consistency. The development is presented for the 3D case. In 2D, the summations 
are performed over four (instead of eight) nodes and only terms not involving z or ζ are relevant. 
 
The pressure gradient within a 3D element in local coordinates is defined in terms of the 
derivatives with respect to the local coordinates: 
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The summations may be expanded and written in detail by reference to relations (4.39) - (4.46) 
and (4.25) - (4.30) (in 2D, (4.9) - (4.12) and (4.1) - (4.4)). 
 
A local discretization of ρ g with a spatial functionality that is consistent with the local pressure 
derivatives (4.147a-c) is 
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where the vertical bars indicate absolute value, ρi is the value of ρ at node i in the element based 
on the value of U at the node through relation (2.3) or (2.4), and g , g , and are the ξ-, η-, 
and ζ-components of 

iξ iη i
gζ

g  at node i, respectively. The 24 (in 2D, eight) gravity vector components 
at the nodes in each element need be calculated only once for a given mesh and may be saved. 
This discretization is robust in that it allows both the density and the direction and magnitude of 
the gravity vector components to vary over an element. No particular significance should be 
attached to the absolute values of basis function derivatives, except that these happen to give the 
desired consistent approximations, as is shown shortly. 
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The gravity vector components in local coordinates at a point in the 3D element are obtained 
from the global gravity components as: 
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where [J] is the Jacobian matrix defined by (4.69). 
 
The derivatives of pressure in local coordinates, (4.147a-c), and the consistent density-gravity 
term components in local coordinates, (4.148) - (4.150), are transformed to global coordinates 
for use in the evaluation of the integrals in which they appear by 
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where (〈〈 gρ 〉〉*)x, (〈〈 gρ 〉〉*)y, and (〈〈 gρ 〉〉*)z are the consistently discretized density-gravity term 
components in global coordinates, and [J]–1 is the inverse Jacobian matrix defined by (4.73a). 
The 2D forms of relations (4.147) to (4.153) are obtained by leaving out all terms involving z 
and ζ. 
 
The spatial consistency of these approximations may be seen by inspecting their expansions in 
local coordinates. For example, in 2D, the ξ-components are 
 

 ( ) ( ) ( ) ([ η+−+η−−=
ξ∂

∂ 1pp1pp
4
1p

4312 )] (4.154) 

 

 ( ) ( ) ( ) ( ) ([ η+ρ+ρ+η−ρ+ρ=ρ ξξξξξ 1gg1gg
4
1g

4321 4321 )] (4.155) 

 
The terms in parentheses preceding the terms containing η all have a constant value for the 
element, and thus the approximations have consistent spatial dependences. 
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4.7 Temporal Evaluation of Adsorbate Mass Balance 
 
The terms in the unified energy and solute mass balance equation that stem from the adsorbate 
mass balance require particular temporal evaluation because some are nonlinear. The following 
terms of relation (4.142) are evaluated here: AT , , and . For solute transport, the 

coefficient c  in  (4.133) becomes  according to (2.52b). The relation that defines κ

1n
i

+

1n
li

+

1n
iGT + 1n

iET +

1+

is
1n

iAT + κ l 
is given by either (2.34c), (2.35c), or (2.36c) depending on the sorption isotherm. The variable 

 is expressed in terms of the concentration of adsorbate,C , in a form given by (4.131). 
The parameters in (4.131), s

1n
si

U + n
si

L and sR, are defined in this section and are based on either (2.34a), 
(2.35a) and (2.36a) depending again on the sorption isotherm. The temporal approximations of 
these parameters are described below for each isotherm. 
 
For linear sorption, all terms and coefficients related to the adsorbate mass are linear and are 
evaluated at the new time level and strictly solved for at this level: 
 
   (4.156a) 1n

io1
1n

s
1n

s CCU
ii

+++ ρχ==
 
    (4.156b) o1

1n
1

1n
s ii

C ρχ=κ= ++

 
    (4.156c) o1Ls ρχ=
 

     (4.156d) 0s R =
 
For Freundlich sorption, the adsorbate concentration is split into a product of two parts for 
temporal evaluation. One part is treated as a first-order term as is linear sorption. This part is 
evaluated strictly at the new time level and solved for on each iteration or time step. The 
remaining part is evaluated as a known quantity, either based on the projected value of Ci at the 
end of the time step on the first iteration, or based on the most recent Ci solution on any 
subsequent iteration. 
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Also: 
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χ  (4.157c) 

 
where the coefficient  is evaluated from the projected or most recent value of C1n

li

+κ i, depending 
on the iteration. 
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Finally, for Langmuir sorption the form used for the temporal evaluation preserves dependence 
on a linear relation to Ci. However, the linear relation is appropriate only at low solute 
concentrations. At high concentrations, the adsorbate concentration approaches (χ1/χ2). 
Therefore, two temporal approximations are combined, (one for low C, and one for high C) in a 
manner depending on the magnitude of concentration. When ( ) 1co2 <<ρχ , the following 
temporal approximation for low values of C, referred to as , is employed: o

sC
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ρχ
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o
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1CC   (4.158) 

 
When , the following temporal approximation for high C,  is employed: ( ) 1co2 >>ρχ ∞
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Thus  may be defined 1n

si
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   (4.160) ∞
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where the weights Wo and W∞, are 
 

 ( )proj
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o2

C1
C

W
ρχ+

ρχ
=∞   (4.161a) 

 
    (4.161b) ∞−= W1Wo

 
By substituting (4.158), (4.159), (4.161a), and (4.161b) into (4.160), the following temporal 
evaluation of  is obtained after algebraic manipulation: 1n

si
C +
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The coefficient κ  is defined as 1n
li

+
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s

ρχ+
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( )( )
( )2proj

io2

2proj
io21

R
C1

C
s

ρχ+

ρχχ
=   (4.162d) 

 
The first term in (4.162a) is solved for on each iteration, and the second term is treated as a 
known. In the above four relations, C  is based on a projection for the first iteration on a time 
step, and is the most recent value of C

proj
i

i on subsequent iterations for the time step. 
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Chapter 5: Other Methods and Algorithms 
 
 
5.1 Rotation of Permeability Tensor 
 
The aquifer permeability may be anisotropic (as discussed in section 2.2 under the heading 
“Fluid flow and flow properties”) and may vary in magnitude and direction from element to 
element (as shown in (4.90)). In 2D, the permeability in each element is completely described by 
input data values for the principal permeability values kmax and kmin, and for θ, the direction in 
degrees from the global +x direction to the direction of maximum permeability. In 3D, it is 
described completely by input data values for kmax, kmid, and kmin, and for the angles θ1, θ2, and 
θ3, which describe how the principal permeability directions are related to the (x,y,z)-coordinate 
directions (see section 2.2). The evaluation of integrals (4.99) and (4.100) (or (4.101) and 
(4.102)) as well as the velocity evaluation (4.146) require the permeability tensor components in 
global coordinates as given by (4.90). Thus, a rotation of the tensor is required from the principal 
permeability directions to the global coordinate directions, as shown for 2D in Figure 2.2.  
 
The rotation is given by 
 
 TL

p
L HkHk =    (5.1) 

 
where in 2D, 
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and in 3D, 
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The matrix k

=
  L is given by the relevant portion of (4.90), depending on whether it is 2D or 3D. 

The matrix TH is the transpose of H , defined by 
 
  for all i and j    (5.4) ji

T
ij HH =

 
For example, the result in 2D is 
 
   (5.5a) θ+θ= 2L

min
2L

max
L
xx sinkcoskk

 
   (5.5b) θ+θ= 2L

min
2L

max
L
yy cosksinkk

 
 ( ) θθ−== cossinkkkk L

min
L
max

L
yx

L
xy   (5.5c) 

 
 
5.2 Radial Coordinates 
 
For 2D simulations, SUTRA is written in terms of 2D Cartesian coordinates x and y. In general, 
the 2D numerical methods are applied to Cartesian forms of the governing equations; however, 
radial coordinates (cylindrical coordinates) r and z can be exactly represented by allowing the 
mesh thickness, Bi, to vary from node to node in an appropriate manner. 
 
A function, f(r,z), of radius r, and vertical coordinate z, is integrated over a cylindrical volume as 
follows: 
 
   (5.6) ( ) dzdrdrz,rfR

rz

θ= ∫∫∫
θ

 
Assuming symmetry with respect to angular coordinate θ (f(r,z) does not depend on θ), the 
integral becomes 
 
   (5.7) ( ) ( ) dzdrr2z,rfR

rz
r π= ∫∫

 
This integration may be compared with a general integration of a function g(x,y) in Cartesian 
coordinates as it is carried out in SUTRA methodology: 
 
   (5.8) ( ) ( ) dydxy,xBz,ygR

xy
c ∫∫=

 
Integrals Rr and Rc are exactly analogous if x≡r, y≡z, and 
 
    (5.9) ( ) r2y,xB π=
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Thus, by a simple redefinition of coordinate names and by setting the mesh thickness, B, at each 
node equal to the circumference of the circle it would sweep out when rotated about the r=0 axis 
of the cylinder (Bi = 2πri), the SUTRA simulation is converted exactly to radial coordinates. 
Figure 5.1 shows a mesh and the volume it sweeps out when in radial coordinates. Each element 
becomes a 3D ring when used in radial coordinates. 
 
 

 

 
 

Figure 5.1. Finite-element mesh in radial coordinates. One element is shaded. 
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5.3 Solution Sequencing 
 
On any given time step, the matrix equations are created and solved in the following order: (1) 
the matrix equation for the fluid mass balance is set up, (2) the transport balance matrix equation 
is set up, (3) pressure is solved for, and (4) concentration or temperature is solved for. Both 
balances are set up on each pass such that the elementwise calculations need be done only once 
per pass. However, SUTRA allows the p or U equation to be set up and solved only every few 
time steps in a cyclic manner based on parameters NPCYC and NUCYC. These values represent 
the solution cycle in time steps. For example, for transient flow and transient transport, setting up 
and solving for both p and U each time step (NPCYC = NUCYC = l) gives the following cycle: 
 
time step:  1 2 3 4 5 6 7 … 

p p p p p p p … solve for:  { U U U U U U U … 
 
or solving for p every third time step and for U each time step (NPCCYC=3 and NUCYC=1) 
gives: 
 
time step:  1 2 3 4 5 6 7 8 9 10 11 12 13 … 

p • p • • p • • p • • p • … solve for:  { U U U U U U U U U U U U U … 
 
However, either of p or U must be solved for on each time step and therefore either NPCYC or 
NUCYC must be set to one. 
 
For a simulation with steady-state flow and transient transport, the sequencing is 
 
time step:  0 1 2 3 4 5 … 

p • • • • • … solve for:  { • U U U U U … 
 
For steady-state flow and steady-state transport, the sequencing is 
 
time step:  0 1 

p • solve for:  { • U 
 
The only exception to the cycling is that for nonsteady cases, both unknowns are solved for on 
the first time step, as shown in the case for NPCYC=3, NUCYC=1, above, and on the last time 
step, irrespective of the values of NPCYC and NUCYC. 
 
It is computationally advantageous to avoid unnecessarily reconstructing the U equation and, 
when the direct solver is used, to avoid the U matrix decomposition steps by allowing solution 
by back-substitution only. This is begun on the second time step solving for U only after the step 
on which a solution is obtained for both p and U. To do this, the matrix coefficients (including 
the time step) must remain constant. Thus, nonlinear variables and fluid velocity are held 
constant with values used on the first time step for U after the step for p and U. For example, 
when NPCYC=1, NUCYC=6: 
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time step:  1 2 3 4 5 6 7 8 9 10 11 12 … 

p • • • • p • • • • • p … solve for:  { U U U U U U U U U U U U … 
        

   constant values  constant values   
        

    back-substitute   back-substitute   
 
Note that p and U solutions must be set by the user to occur on time steps when relevant 
boundary conditions, sources or sinks are set to change in value. 
 
 
5.4 Velocity Calculation for Output 
 
The velocities employed in the numerical solution of the fluid mass, and the solute mass or 
energy balances are those calculated at the Gauss points in each element (as described in section 
4.6, “Consistent Evaluation of Fluid Velocity.”) For purposes of output, however, only one 
velocity value per element is made available. This is the velocity at the element centroid, which 
is defined as the point whose coordinates are the arithmetic average of the coordinates of the four 
(2D) or eight (3D) nodes at the corners of the element; for example, the x-coordinate of the 
centroid is the average of the x-coordinates of the corner nodes. The centroid can equivalently be 
defined as the point in the element where the lines connecting the midpoints of opposite sides 
intersect, as shown in Figure 5.2 for both 2D and 3D elements. 
 

 
   (a)       (b) 

Figure 5.2. (a) 2D finite element in global coordinates (x,y) with element centroid. The dashed lines 
connect the midpoints of the element sides. (b) 3D finite element in global coordinates (x,y,z) with 
element centroid. Crosses (+) indicate centroids of element faces. 

 
The velocity at the centroid of an element is calculated by taking the average of the velocities (in 
global coordinates) at the four (2D) or eight (3D) Gauss points; for example, the x-component of 
velocity at the centroid is the average of the x-components of the velocity at the Gauss points. 
This process gives the “true” velocity at the centroid that would be calculated employing the 
consistent velocity approximation evaluated at this point in the element. In 2D, this may be seen 
by setting ξ=η=0 in (4.154) and (4.155). Note that this velocity calculation is based on 
previous, not current, pressures and concentrations or temperatures (i.e., from the 
previous iteration or time step). 
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5.5 Budget Calculations 
 
A fluid mass and solute mass or energy budget provides information on the quantities of fluid 
mass and either solute mass or energy entering or exiting the simulated region. Generally, it is 
not intended as a check on numerical accuracy, but rather as an aid in interpreting simulation 
results. When an iterative matrix solver is used, the discrepancy in the budget may be used to 
judge iterative convergence. 
 
The fluid budget is calculated based on the terms of the integrated-discretized fluid mass 
balance, (4.96), as approximated in time according to (4.112). After the solution to a time step 
makes available p  and , the time derivatives of these, dp1n

i
+ 1n

iU +
i/dt and dUi/dt, are calculated 

according to (4.104) and (4.140). 
 
The total rate of change in stored fluid mass in the region due to pressure changes over the recent 
time step is: 

 [ s/M
dt
dpAF i1n

i

NN

1i

+

=
∑ ]  (5.11) 

 
where AFi is defined in (4.97), and the total rate of change in stored fluid due to changes in 
concentration or temperature is: 

 [ s/M
dt

dUCF i1n
i

NN

1i

+

=
∑ ]  (5.12) 

 
where CFi is defined in (4.98). The sum of (5.11) and (5.12) gives the total rate of change of 
fluid mass in the entire region. 
 
Fluid sources, Q , may vary with time, and those that do vary are reported by the budget at 
each source node. The sum of Q  

1n
i

+

1n
i

+

   (5.13) [ s/MQ 1n
i

NN

1i

+

=
∑ ]

]

 
gives the total rate of fluid mass change due to all sources and sinks of fluid mass, as well as to 
specified fluxes across boundaries. Fluid sources due to specified pressure conditions, , 
usually vary with time and are also reported by the budget at each node. This source is calculated 
at each node from (4.111). The sum of  

1n
BC i

Q +

1n
BCi

Q +

   (5.14) [ s/MQ 1n
BC

NN

1i
i

+

=
∑

 
gives the total rate of fluid mass change in the entire region due to inflows and outflows at all 
specified pressure nodes. 
 
The sum of (5.13) and (5.14) should be close to the value given by the sum of (5.11) and (5.12). 
These may be expected to match better when iterations for nonlinearity have been used and 
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convergence was achieved, because the budget is calculated for a time step using only one 
iteration with the (n+1) time level values of nonlinear coefficients, and the solution is obtained 
with coefficients based on projected values of p and U. 
 
The solute mass or energy budget is calculated based on the terms of the total balance (2.47) 
(prior to subtraction of the terms that appear in the fluid mass balance done in equations (2.48) 
through (2.52)). This allows simpler physical interpretation of the terms (particularly the fluid 
source terms) in the balance than would the similar terms of the fluid-conservative balance form 
(2.52). An integrated-discretized balance, similar to that given in (4.132) for the fluid-
conservative form, and as approximated in the time according to (4.142), is presented in 
SUTRA’s solute mass or energy budget.  
 
The total rate of change in stored solute mass or energy in the region due to change in 
concentration or temperature over the recently computed time step is 

 [ s/Eors/M
dt

dUAT s
i1n

i

NN

1i

+

=
∑ ] (5.15a) 

 
where  is calculated from (4.133) using  in all coefficients requiring a value 
(including adsorption isotherms for c

1n
iAT + 1n

iU +

s = κ1). In reporting this portion of the budget, a separate 
value is given for the sum of the portion stemming from (εswρcw) and for (1–ε)ρscs. The former 
sum relates to the rate of solute mass or energy change in the fluid, and the latter relates to the 
change in the solid-immobile portion. The total rate of change in stored solute mass or energy in 
the region due to change in stored fluid mass (see first term of (2.48)) is 

 [ s/Eors/M
dt

dUCF
dt

dpAFUc s

n
i1n

i

1n
i1n

i
1n

iw

NN
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++

=
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]

 (5.15b) 

 
The total rate of first-order solute mass production in the fluid is calculated as 

   (5.16a) [ s/MUGT 1n
i

1n
i

NN

1i

++

=
∑

 
and at the rate of first-order adsorbate production is calculated as 

  (5.16b) [ s/MTRGUTLG 1n
is

1n
i

1n
is

NN

1i

+++

=

+∑
 
where GTi and GsTLi and GsTRi are defined by (4.136a-c), and all isotherms are based on . 
Fluid and adsorbate rates are reported separately by the budget. These terms have no analogy for 
energy transport. The terms of zero-order production of solute and adsorbate mass or energy 
production in the fluid and solid matrix are 

1n
iU +

   (5.17) [ ]s/Eofs/MET s
1n

i

NN

1i

+

=
∑

 
where ETi is defined by (4.137) and the fluid and immobile phase production rates are reported 
separately by the budget. 
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Solute mass and energy sources and sinks due to inflowing or outflowing fluid mass may vary 
with time and are reported by the budget at each fluid source node and at each specified pressure 
node. These are summed separately for the entire region: 

  (5.18) [ s/Eors/MUcQ s
1n

iw
1n

i

NN

1i

+∗+

=
∑ ]

]

]

]

  (5.19) [ s/Eors/MUcQ s
1n

BCw
*)1n(

BC

NN

1i
ii

++

=
∑

 
where  and 1*n

iU + 1n
BCi

U +
 take on the user-specified values of U for fluid inflows, and the U value of 

the ambient system fluid for outflows. The (n+1)* level indicates that QBC is evaluated on the 
first iteration at the previous time level (n) and on subsequent iterations, at the most recent 
iteration level for the present time step. These sums give the total rate of change of solute mass 
or energy in the entire system due to these fluid sources and sinks. 
 
The diffusive-dispersive sources of solute mass or energy (4.144) are summed for the entire 
system and are also reported by node as they may vary with time: 

  (5.20) [ s/Eors/Ms
1n

IN

NN

1i
i

+

=

ψ∑
 
Finally, solute mass or energy sources due to specified concentration or temperature conditions, 

, usually vary with time and are calculated at each node from (4.143). These are 
additionally reported by the budget at each node. The sum of these sources: 

1n
BCi

+ψ

  (5.21) [ s/Eors/Ms
1n

BC

NN

1i
i

+

=

ψ∑
 
gives the total rate of solute mass or energy change in the entire region due to fluxes of solute or 
energy at all specified concentration or temperatue nodes. 
 
The sum of (5.16a), (5.16b), (5.17), (5.18), (5.19), (5.20) and (5.21) should be close to the value 
given by (5.15a) and (5.15b). These values may be expected to match best when nonlinearity 
iterations have been used and convergence achieved, because the budget is calculated for a time 
step with only one iteration with all information at the (n+1) time level, whereas the solution is 
obtained using nonlinear coefficients based on projections of p and U. 
 
In addition to providing the net changes in storage, net sources and inflows, and net production 
of fluid and energy or solute, the budget also separately provides the total of all positive 
contributions and the total of all negative contributions for each of these quantities. For example, 
the net inflow of fluid at specified pressure nodes is provided as the sum over all nodes at which 
there is an inflow (a positive flow) and the sum over all nodes at which there is an outflow (a 
negative flow). 
  
Based on the sums described above, SUTRA computes and reports absolute and relative balance 
errors for fluid mass and for energy or solute mass. For fluid mass, the absolute error is defined 
as 
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 ff FSerror balance mass fluid absolute −=    (5.22) 

where 
    (5.23) fluid stored in change of ratenet Sf =

and 
   (5.24) tflowsinflows/outhroughfluid of gain/loss of ratenet Ff =

 
The relative error is then defined as 
 
 fff A/)FS(*100error balance mass fluid relative −=   (5.25) 

where 
 ( ) 2FFSSA fffff

−+−+ −+−=    (5.26) 

 
The superscripts “+” and “-“ indicate the summed positive and negative contributions, 
respectively, to Sf and Ff. By definition, S  and  are positive, and S  and  are negative, so 
A

+
f

+
fF −

f
−
fF

f is always positive and is a measure of the overall fluid mass balance “activity” (storage, 
release, inflow, and outflow of fluid) in the system. The relative error is expressed as a 
percentage of this activity. 
 
For energy or solute mass (including adsorbate), the absolute error is defined as 

 ttt FPSerror balance mass soluteor energy  absolute −−=   (5.27) 

where 

   (5.28) mass soluteor energy  stored in change of ratenet St =

   (5.29) mass soluteor energy  of/decay production of ratenet Pt =

and 

   (5.30) 
nkssources/si and tflowsinflows/ou through
mass soluteor energy  of gain/loss of ratenet Ft =

 
The relative error is then defined as 

 tttt A/)FPS(*100error balance mass soluteor energy  relative −−=   (5.31) 

where 
 ( ) 2FFPPSSA ttttttt

−+−+−+ −+−+−=    (5.32) 

The superscripts “+” and “-“ indicate the summed positive and negative contributions, 
respectively, to St, Pt, and Ft. By definition, S , P , and  are positive, and S , , and  are 
negative, so A

+
t

+
t

+
tF −

t
−
tP −

tF
t is always positive and is a measure of the overall energy or solute mass balance 

“activity” (storage, release, production, decay, inflows, outflows, sources, and sinks of energy or 
solute mass) in the system. The relative error is expressed as a percentage of this activity. 
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5.6 Program Structure and Program Unit Descriptions 
 
SUTRA is structured in a modular, top-down programming style that allows for code readability, 
ease in tracing logic, and hopefully, ease in eventual modifications. Each subroutine carries out a 
primary function that is clearly distinguished from all other program functions. User-required 
program changes are limited to coding portions of a subroutine that is used to control time-
dependent sources and boundary conditions (when they are used) and a subroutine that sets the 
unsaturated flow functions when unsaturated flow is simulated. The program is commented to 
aid in tracing logic. 
 
SUTRA is written in FORTRAN-90 and takes advantage of dynamic array allocation; however, 
few structures are used that are not compatible with FORTRAN-77. The code runs accurately 
when it employs “double-precision” real variables (64 bit words with 47 bit mantissa) with a 
precision of about 15 significant figures, and 32 bit word integer variables. Should the code 
require modification to run on machines with other word lengths or other bit to byte ratios, the 
number of significant figures in a real variable should be preserved, if not increased. 
 
Input and output are also somewhat modularized. Input is through three data files consisting of 
list-directed records. The input first file, called “SUTRA.FIL”, contains a list of Fortran unit 
numbers and the names of the remaining input and output files to which the unit numbers are to 
be assigned. The second input file, typically given the filename extension “.ics”, contains only 
data on initial conditions for p and U at the nodes. The third input file, typically given the 
filename extension “.inp”, contains all other input data required for a simulation.  
 
Output is to six data files. The first output file, typically given the filename extension “.rst”, 
receives the result of the final time step in a format equivalent to that of the “.ics” file (with some 
additional information), for later use as the initial conditions file if the simulation is to be 
restarted. The second output file, typically given the filename extension “.nod”, receives 
nodewise results (node coordinates, pressures, concentrations, and saturations) at each node for a 
user-specified sequence of time steps. The third output file, typically given the filename 
extension “.ele”, receives elementwise results (element centroid coordinates and velocity 
components) at each element centroid for a user-specified sequence of time steps. In the “.nod” 
and “.ele” files, output is arranged in columns to facilitate importing the results into 
postprocessing software. The fourth output file, typically given the filename extension “.obs”, 
receives nodewise results, called observations, for a set of nodes and a sequence of time steps 
specified by the user. The fifth output file, typically given the filename extension “.lst”, can list 
(at the user’s option) a variety of information, including a summary of the input parameters and 
fluid and solute mass budget calculations, as shown in Figure 5.3. The sixth output file, typically 
given the filename extension “.smy”, summarizes simulation progress, receives convergence and 
error information; its default name is “SUTRA.SMY”. 
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Figure 5.3 . Schematic of SUTRA output to the “.lst” file. 
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The input and output files are summarized below: 
 

 Filename or extension Contents 
SUTRA.FIL file assignments 

.inp main input Input files 
.ics initial conditions 

.smy (SUTRA.SMY) simulation summary 
.lst main results listing 
.rst restart file (same format as .ics file) 
.nod nodewise results 
.ele elementwise results 

Output files 

.obs observation results 
 
The main logic flow of the program is straightforward. A schematic diagram of the code is 
shown in Figure 5.4. The main program sets up dimensions and calls the main control routine, 
SUTRA, which cycles the program tasks by calling most of the remaining subroutines in 
sequence. Subroutines are named to describe their main function. The remainder of this section 
describes the SUTRA main program and each of the subroutines and subprograms in 
alphabetical order. 
 
Main Program SUTRA_MAIN 
 
• Purpose: 
 

1. To read in certain input data, including the problem dimensions. 
 
2. To compute the dimensions of and dynamically allocate memory for the various arrays 

used by SUTRA. 
 

3. To start and stop the simulation. 
 
• Calls to: 

DIMWRK, FOPEN, INDAT0, PRSWDS, READIF, SKPCOM, SUTERR, SUTRA 
 
• Description: 

The main program reads data from datasets 1 – 8 of the “.inp” input file (in part, by way of a 
call to subroutine INDAT0).  It uses the input data to compute (in part, by way of a call to 
subroutine DIMWRK) the dimensions of the various arrays that are declared in subroutine 
SUTRA; these dimensions are passed through COMMON blocks.  It then passes control to 
subroutine SUTRA. 

 
Subroutine ADSORB 
 
• Purpose: 

To calculate and supply values from adsorption isotherms to the simulation. 
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Figure 5.4 . SUTRA logic flow. “Utilities” are program units that perform simple functions and are not 
integral to the logic flow; they are listed separately for the sake of clarity and completeness. GLOxxx 
refers to either GLOBAN or GLOTRI. 
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• Called by: 

BUDGET, SUTRA 
 
• Description: 

ADSORB calculates the sorption coefficient, (called CS1), and s1n
1i

+κ L (called SL) and sR 
(called SR), which are used in calculating adsorbate concentrations, Us, depending on the 
particular isotherm chosen: linear, Freundlich or Langmuir. The calculations are based on the 
description given in section 4.7, “Temporal Evaluation of Adsorbate Mass Balance.” 
ADSORB is called once per time step for U, when sorption is employed in the simulation. 

 
Subroutine BANWID 
 
• Purpose: 

To calculate the bandwidth of the mesh. 
 
• Called by: 

SUTRA 
 
• Calls to: 

SUTERR 
 
• Description: 

BANWID checks the incidence array, IN, in all elements for the maximum difference in 
node numbers contained in an element. This value, NDIFF, is used to calculate the 
bandwidth, NBL. 

 
Subroutine BASIS2 
 
• Purpose: 

To calculate values of basis functions, weighting functions, their derivatives, Jacobians, and 
coefficients at a point in a quadrilateral element for 2D meshes. 

 
• Called by: 

ELEMN2 
 
• Calls to: 

UNSAT 
 
• Description: 

BASIS2 receives the coordinates of a point in an element in local coordinates (ξ, η), denoted 
(XLOC,YLOC) in the routine. At this point, BASIS2 determines the following: values of the 
four basis functions and their derivatives in each local coordinate direction, elements of the 
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Jacobian matrix, the determinant of the Jacobian matrix, elements of the inverse Jacobian 
matrix, and if required, four values of the asymmetric weighting function (one for each node) 
and their derivatives. In addition, the derivatives are transformed to global coordinates and 
passed out to ELEMN2. Values of nodewise-discretized parameters, the local and global 
velocity, and parameters dependent on p or U are calculated at this location in the element. 
Unsaturated parameters are obtained by a call to UNSAT. The calculations are based on 
section 4.1 “Basis and Weighting Functions”, 4.2 “Coordinate Transformations,” and 4.6 
“Consistent Evaluation of Fluid Velocity.” 
 

Subroutine BASIS3 
 
• Purpose: 

To calculate values of basis functions, weighting functions, their derivatives, Jacobians, and 
coefficients at a point in a hexahedral element for 3D meshes. 

 
• Called by: 

ELEMN3 
 
• Calls to: 

UNSAT 
 
• Description: 

BASIS3 receives the coordinates of a point in an element in local coordinates (ξ, η, ζ), 
denoted (XLOC,YLOC,ZLOC) in the routine. At this point, BASIS3 determines the 
following: values of the eight basis functions and their derivatives in each local coordinate 
direction, elements of the Jacobian matrix, the determinant of the Jacobian matrix, elements 
of the inverse Jacobian matrix, and if required, eight values of the asymmetric weighting 
function (one for each node) and their derivatives. In addition, the derivatives are 
transformed to global coordinates and passed out to ELEMN3. Values of nodewise-
discretized parameters, the local and global velocity, and parameters dependent on p or U are 
calculated at this location in the element. Values of parameters dependent on p or U are 
calculated at this location. Unsaturated parameters are obtained by a call to UNSAT. The 
calculations are based on section 4.1 “Basis and Weighting Functions”, 4.2 “Coordinate 
Transformations,” and 4.6 “Consistent Evaluation of Fluid Velocity.” 

 
Subroutine BC 
 
• Purpose: 
 

1. To implement specified pressure node conditions in the matrix equations. 
 
2. To implement specified temperature or concentration node conditions in the matrix 

equations. 
 
• Called by: 

SUTRA 
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• Description: 

The source terms involving  in (4.112) are added to fluid balance matrix equation to 
implement specified p nodes. The unified energy-solute mass balance is modified by the 
addition of a source, QPL (calculated with the most recent p solution by subroutine SUTRA) 
with concentration or temperature, UBC. The source terms involving 

ipν

iUν  in (4.145) are 
added to the energy-solute mass balance matrix equation in order to implement specified U 
nodes. 

 
Subroutine BCTIME 
 
• Purpose: 

A user-programmed routine in which time-dependent sources and boundary conditions are 
specified. 

 
• Called by: 

SUTRA 
 
• Description: 

BCTIME is called on each time step when a time-dependent source or boundary condition is 
specified by the user. It allows the value of a source or boundary condition to be changed on 
any or all time steps. 
 
BCTIME is divided into four sections. The first section allows the user to specify either time-
dependent pressure and concentration or temperature of an inflow, or both, at specified 
pressure nodes (PBC or UBC). The second section allows user specification of time-
dependent U at specified concentration/temperature nodes. The third section allows user 
specification of time-dependent fluid source or source concentration/temperature. The fourth 
section allows user-specification of time-dependent solute mass or energy sources. 
 
The current time step number, IT, and current time (at the end of the present time step) in 
various units are available for use in the user-supplied programming. The user may program 
in any convenient way through data statements, calls to other programs, logical structures, 
“read” or “write” statements, or other preferred methods of specifying the time variability of 
sources or specified p and U conditions. More information may be found in section 7.5, 
“User-Supplied Programming.” 

 
Block-data Subprogram BDINIT 
 
• Purpose: 

To initialize variables named in COMMON blocks. 
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• Description: 

BDINIT is a block-data subprogram that initializes certain variables named in COMMON 
blocks. 

 
Subroutine BOUND 
 
• Purpose: 
 

1. To read specified pressure node numbers and pressure values, check the data, and print 
information. 

 
2. To read specified concentration or temperature node numbers and the values, check the 

data, and print information. 
 

3. To set up pointer arrays that track the specified p and U nodes for the simulation. 
 
• Called by: 

SUTRA 
 
• Calls to: 

READIF, SKPCOM, SUTERR 
 
• Description: 

BOUND reads and organizes, checks and prints information on specified p nodes and 
specified U nodes. The pressure information read is node number, pressure value and U value 
of any inflow at this node. If there are NPBC specified pressure nodes, the above information 
becomes the first NPBC values in vectors IPBC, PBC and UBC. The specified U information 
read is node number and U value. If there are NUBC specified concentration nodes, the 
above information begins in the (NPBC+1) position of IUBC and UBC, and ends in the 
(NUPBC+NUBC) position of IUBC and UBC. This is shown below: 
 

1 2 3 4 5 6 7 8 9 10 11

IPBC ( x x x x x x      ) 
 

1 2 3 4 5 6      

PBC ( x x x x x x      ) 
 

x x x x x x y y y y  

UBC ( 1 2 3 4 5 6 7 8 9 10 11 ) 
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      y y y y  

IUBC ( 1 2 3 4 5 6 7 8 9 10 11 ) 
 
where “x “ refers to specified p information, and “y” refers to specified U information. 
 
Counts are made of each type of specification and are checked against NPBC and NUBC for 
correctness. A zero node number ends the data set for p and then for U. One blank element is 
left at the end of each of these arrays in case there are no specified p or U nodes. The first 
NPBC elements of IUBC are blank. These arrays are used primarily by subroutines BC and 
BUDGET. 

 
Subroutine BUDGET 
 
• Purpose: 

1. To calculate and output a fluid mass budget on each time step with output. 

2. To calculate and output a solute mass or energy budget on each time step with output. 

 
• Called by: 

SUTRA 
 
• Calls to: 

ADSORB, UNSAT 
 
• Description: 

BUDGET calculates and outputs a fluid mass, solute mass or energy budget on each output 
time step for whichever of p and/or U are solved for on the just-completed time step. The 
calculations are done as described in section 5.5 “Budget Calculations.” 

 
Subroutine CONNEC 
 
• Purpose: 

To read, output, and organize node incidence data. 

 
• Called by: 

SUTRA 
 
• Calls to: 

READIF, SKPCOM, SUTERR 
 

122 



 
• Description: 

CONNEC reads the nodal incidence list, which describes how nodes are connected. The data 
are organized as an array, IN, which contains the ordered set of node numbers (four in 2D; 
eight in 3D) in each element in order of element number. Thus, for a 2D simulation, the ninth 
through twelfth values in IN are the four nodes in element number three. Array IN is used in 
BANWID, ELEMN2, ELEMN3, GLOBAN, and GLOTRI. 

 
Subroutine DIMWRK 
 
• Purpose: 

To return dimensions for the iterative solver work arrays. 

 
• Called by: 

Main program 
 
• Description: 

DIMWRK computes the dimensions of the integer and floating-point work arrays used by the 
iterative matrix solvers. 

 
Subroutine DISPR3 
 
• Purpose: 
 

1. To compute longitudinal and transverse dispersivities for 3D simulations. 
 
2. To return the angles of the velocity vector with respect to the principal permeability 

directions. 
 
• Called by: 

ELEMN3 
 
• Calls to: 

ROTATE, ROTMAT 
 
• Description: 

DISPR3 computes longitudinal and transverse dispersivities using an ad hoc, 3D anisotropic 
dispersion model that is a generalization of the 2D SUTRA dispersion model (see section 
2.5). Three dispersivities are computed:  AL, the longitudinal dispersivity, and AT1 and AT2, 
the two transverse dispersivities. 

 
Subroutine ELEMN2 
 
• Purpose: 

1. To carry out all 2D elementwise calculations required in the matrix equations. 
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2. To calculate 2D element centroid velocities for output. 

 
• Called by: 

SUTRA 
 
• Calls to: 

BASIS2, GLOBAN, GLOTRI, SUTERR 
 

• Description: 

ELEMN2 undertakes a loop through all the elements in a mesh. For each element, subroutine 
BASIS2 is called four times, once for each Gauss point. BASIS2 provides basis function 
information, and values of coefficients and velocities at each Gauss point, all of which is 
saved by ELEMN2 for use in calculations for the present element. 
 
Gaussian integration (two by two points) as described in section 4.3, is carried out for each 
integral in the fluid mass balance ((4.101) and (4.102)), and for each integral in the unified 
energy and solute mass balance ((4.138) and (4.139)). The portion of cell volume within the 
present element for node I, VOLE(I), is calculated with the fluid balance integrals. The 
values of the integrals are saved either as four-element vectors or as four-by-four arrays. 
Separate (nearly duplicate) sections of the integration code employ either basis functions for 
weighting or asymmetric weighting functions. 
 
The vectors and arrays containing the values of integrals over the present element are passed 
to subroutine GLOBAN or GLOTRI for addition to the global matrix equation (assembly 
process). 

 
Subroutine ELEMN3 
 
• Purpose: 

1. To carry out all 3D elementwise calculations required in the matrix equations. 

2. To calculate 3D element centroid velocities for output. 

 
• Called by: 

SUTRA 
 
• Calls to: 

DISPR3, BASIS3, GLOBAN, GLOTRI, SUTERR, TENSYM 
 

• Description: 

ELEMN3 undertakes a loop through all the elements in a mesh. For each element, subroutine 
BASIS3 is called eight times, once for each Gauss point. BASIS3 provides basis function 
information, and values of coefficients and velocities at each Gauss point, all of which is 
saved by ELEMN3 for use in calculations for the present element. 
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Gaussian integration (two by two by two points) as described in section 4.3, is carried out for 
each integral in the fluid mass balance ((4.99) and (4.100)), and for each integral in the 
unified energy and solute mass balance ((4.134) and (4.135)). The portion of cell volume 
within the present element for node I, VOLE(I), is calculated with the fluid balance integrals. 
The values of the integrals are saved either as eight-element vectors or as eight-by-eight 
arrays. Separate (nearly duplicate) sections of the integration code employ either basis 
functions for weighting or asymmetric weighting functions. 
 
The vectors and arrays containing the values of integrals over the present element are passed 
to subroutine GLOBAN or GLOTRI for addition to the global matrix equation (assembly 
process). 

 
Subroutine FOPEN 
 
• Purpose: 

1. To open the file “SUTRA.FIL” and read in unit numbers and file names. 

2. To check for the existence of and open files used in the SUTRA simulation. 

 
• Called by: 

Main program 
 
• Calls to: 

SUTERR 
 
• Description: 

FOPEN first opens the file “SUTRA.FIL”, from which it reads the Fortran unit numbers and 
associated filenames to be used during the SUTRA run. It then checks for duplicate unit 
numbers, checks for the existence of the input files, and opens the input and output files.  

 
Subroutine GLOBAN 
 
• Purpose: 

To assemble elementwise integrations into the global banded matrix form used by the direct 
(Gaussian elimination) solver. 

 
• Called by: 

ELEMN2, ELEMN3 
 
• Description: 

GLOBAN carries out the sum over elements of integrals evaluated over each element by 
ELEMN2 or ELEMN3 (as suggested in 2D by relation (3.23)). Both the matrix and right-
hand-side vector terms involving integrals in the discretized governing equations (4.112) and 
(4.145) are constructed. 
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Subroutine GLOTRI 
 
• Purpose: 

To assemble elementwise integrations into the global “triad” matrix form used by the SLAP 
iterative solvers. 

 
• Called by: 

ELEMN2, ELEMN3 
 
• Description: 

GLOTRI carries out the sum over elements of integrals evaluated over each element by 
ELEMN2 or ELEMN3 (as suggested in 2D by relation (3.23)). Both the matrix and right-
hand-side vector terms involving integrals in the discretized governing equations (4.112) and 
(4.145) are constructed. 

 
Subroutine INDAT0 
 
• Purpose: 

To input, output, and organize a portion of the “.inp” input data. 

 
• Called by: 

Main program 
 
• Calls to: 

READIF, SKPCOM, SUTERR 
 
• Description: 

INDAT0 reads data from the “.inp” file (datasets 5 – 7) that are needed by the main program 
to compute array dimensions before passing control to subroutine SUTRA. 

 
Subroutine INDAT1 
 
• Purpose: 

1. To read simulation and mesh data from the “.inp” data file, and output this information. 

2. To initialize some variables and carry out minor calculations. 

 
• Called by: 

SUTRA 
 
• Calls to: 

READIF, SKPCOM, SUTERR, TENSYM 
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• Description: 

INDAT1 reads a portion of the “.inp” input data file, ending with the elementwise data set. 
Most information is printed on the “.lst” data file after reading; the amount of output depends 
on the user choice of long or short output format. Scale factors are multiplied with 
appropriate input data. Calculations are carried out for a thermal conductivity adjustment and 
for determination of the components of the permeability matrix k in each element from kmax, 
kmin, and θ (for 2D) or from kmax, kmid, kmin, θ1, θ2, and θ3 (for 3D). 

 
Subroutine INDAT2 
 
• Purpose: 

1. To read initial conditions from the “.ics” file. 

2. To initialize some arrays. 

 
• Called by: 

SUTRA 
 
• Calls to: 

READIF, SKPCOM, SUTERR, UNSAT, ZERO 
 
• Description: 

INDAT2 reads the “.ics” data file, which contains initial conditions for p and U. The warm-
start section reads initial conditions and parameter values of a previous time step, all of 
which must have been stored by subroutine OUTRST on a previous simulation. For a cold 
start, INDAT2 reads only initial p and initial U. On a cold start, INDAT2 calls UNSAT for 
calculation of initial saturation values. 

 
Subroutine NODAL 
 
• Purpose: 

To calculate and assemble all nodewise and cellwise terms in the matrix equation. 
 
• Called by: 

SUTRA 
 
• Calls to: 

UNSAT 
 
• Description: 

NODAL undertakes a loop through all nodes in the mesh and calculates values of all cellwise 
terms. For each node, time derivatives and a fluid source are added to the fluid mass balance 
matrix equation. The time derivative as well as terms due to fluid sources, production, and 
boundary fluxes of U are prepared and added to the solute mass/energy balance matrix 
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equation. Subroutine UNSAT is called for unsaturated flow parameters. The terms added by 
NODAL may be described as the nonintegral terms of (4.96) and (4.132) (except for the 
specified pressure terms.) 

 
Subroutine OUTELE 
 
• Purpose: 

To print elementwise output, organized in columns, to the “.ele” file.  
 
• Called by: 

SUTRA 
 
• Description: 

OUTELE writes element numbers, element centroid coordinates, and elementwise solution 
data (components of velocity in global coordinates) in a columnwise format that facilitates 
importing SUTRA output into post-processing software. The content of each column is 
specified in the “.inp” input file, giving the user some control over the format of the output. 

 
Subroutine OUTLST2 
 
• Purpose: 

To output the following to the “.lst” file for 2D simulations: 
 Initial conditions 
 Pressure solutions 
 Saturation values 
 Concentration or temperature solutions 
 Steady-state pressure solution 
 Fluid velocities (magnitude and direction) 

 
• Called by: 

SUTRA 
 
• Description: 

For 2D simulations, OUTLST2 is the main output routine for writing to the “.lst” file and is 
used for printing solutions. 

 
Subroutine OUTLST3 
 
• Purpose: 

To output the following to the “.lst” file for 3D simulations: 
 Initial conditions 
 Pressure solutions 
 Saturation values 
 Concentration or temperature solutions 
 Steady-state pressure solution 
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 Fluid velocities (magnitude and direction) 

 
• Called by: 

SUTRA 
 
• Description: 

For 3D simulations, OUTLST3 is the main output routine for writing to the “.lst” file and is 
used for printing solutions. 

 
Subroutine OUTNOD 
 
• Purpose: 

To print nodewise output, organized in columns, to the “.nod” file.  
 
• Called by: 

SUTRA 
 
• Description: 

OUTNOD writes node numbers, node coordinates, and nodewise solution data (pressures, 
concentrations or temperatures, and saturations) in a columnwise format that facilitates 
importing SUTRA output into postprocessing software. The content of each column is 
specified in the “.inp” input file, giving the user some control over the format of the output. 

 
Subroutine OUTOBS 
 
• Purpose: 

To print observation data to the “.obs” file.  
 
• Called by: 

SUTRA 
 
• Description: 

OUTOBS writes pressures, concentrations or temperatures, and saturations at observation 
nodes to the “.obs” file. 

 
Subroutine PRSWDS 
 
• Purpose: 

To parse character strings into words.  
 
• Called by: 

Main program, SUTERR 
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• Description: 

PRSWDS parses the character variable STRING into an array, WORDS, that contains the 
individual words that make up STRING. Words are groups of characters separated by one or 
more of the single-character delimiter DELIM and/or blanks. 

 
Subroutine PTRSET 
 
• Purpose: 

To set up pointer arrays needed to specify the matrix structure used by the iterative solvers.  
 
• Called by: 

SUTRA 
 
• Calls to: 

TRISET 
 
• Description: 

PTRSET sets up several pointer arrays that are used to define the matrix structure used by the 
iterative solvers. PTRSET currently assumes that the mesh structure is logically rectangular. 
Array NBI27 gives the correspondence between SUTRA’s banded matrix format and a 
compressed format based on the 27-node (for 3D) or 9-node (for 2D) “molecule.” Array 
MIOFF is used by the global matrix assembly routines GLOBAN and GLOTRI to compute 
the position of a coefficient in the matrix array based on its row index and its local node 
number in the 27-node or 9-node molecule. Arrays IA and JA define the “triad” matrix 
structure used by the SLAP iterative solvers. They are computed by way of a call to TRISET. 

 
Subroutine READIF 
 
• Purpose: 

To read a line from an input file into the character variable INTFIL. 
 
• Called by: 

Main program, BOUND, CONNEC, INDAT0, INDAT1, INDAT2, SOURCE 
 
• Calls to: 

SUTERR 
 
• Description: 

READIF reads a line from an input file into the character variable INTFIL, which is used by 
various SUTRA subroutines as a Fortran “internal file” from which input data are read. This 
allows list-directed SUTRA input files to be read and processed strictly line-by-line, which 
simplifies the identification of errors in the input data. 
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Subroutine ROTATE 
 
• Purpose: 

To transform a 3D vector by applying a rotation matrix. 
 
• Called by: 

DISPR3 
 
• Description: 

ROTATE transforms a 3D vector {x} to {xp} by applying the rotation matrix [G]. 
 
Subroutine ROTMAT 
 
• Purpose: 

To compute the transformation matrix that converts a vector from one Cartesian coordinate 
system to another. 

 
• Called by: 

DISPR3, TENSYM 
 
• Description: 

ROTMAT computes the transformation matrix [G] that converts vector {v} from coordinate 
system (x, y, z) to coordinate system (x’, y’, z’) according to {v’}=[G]{v}. The overall 
transformation is the result of three rotations applied consecutively: A1 = angle of rotation in 
the x,y-plane, counterclockwise looking down the +z-axis toward the origin; A2 = angle of 
rotation from the x,y-plane, counterclockwise looking away from the origin, up the axis that, 
prior to the first rotation, was aligned with the +y-axis; A3 = angle of rotation about the x’-
axis (the axis that, prior to any rotations, was aligned with the x-axis), counterclockwise 
looking down the +x’-axis toward the origin. 

 
Subroutine SKPCOM  
 
• Purpose: 

1. To identify and skip over comment lines in the SUTRA input files. 
2. To return the number of lines skipped. 

 
• Called by: 

Main program, BOUND, CONNEC, INDAT0, INDAT1, INDAT2, SOURCE 
 
• Calls to: 

SUTERR 
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• Description: 

In the SUTRA “.inp” and “.ics” input files, comment lines are designated by “#” in the first 
column. SKPCOM identifies and skips such lines (by executing READ statements) until it 
reaches a non-comment line. It then executes a BACKSPACE to position the file at the non-
comment line and returns the number of lines skipped. 

 
Subroutine SOLVEB 
 
• Purpose: 

To directly solve a matrix equation with a nonsymmetric banded matrix. 
 
• Called by: 

SOLVER 
 
• Description: 

SOLVEB expects the matrix band as a vertical rectangular block with the main diagonal in 
the center column, and minor diagonals in the other columns. The upper left-hand corner and 
lower right-hand corner of the matrix are blank. 
 
The first section of the routine carries out an LU decomposition of the matrix, which is saved 
within the original matrix space. The second section of the routine prepares the right-hand-
side for solution and carries out back-substitution with a given right-hand-side vector. 

 
Subroutine SOLVER 
 
• Purpose: 

To call the matrix solver routine specified by the user. 
 
• Called by: 

SUTRA 
 
• Calls to: 

SOLWRP, SOLVEB 
 
• Description: 

SOLVER calls the direct (Gaussian elimination) solver SOLVEB or, by way of SOLWRP, 
an iterative solver. 

 
Subroutine SOLWRP 
 
• Purpose: 

1. To set up parameters and arrays prior to calling an iterative solver. 
2. To call a solver routine from the iterative solver package. 
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• Called by: 

SOLVER 
 
• Calls to: 

DSLUGM, DSLUOM, SUTERR, TRISET 
 
• Description: 

SOLWRP is a “wrapper” for the iterative solver package. It resets the matrix pointer arrays 
IA and JA if necessary, sets up the right-hand-side vector and the solution vector (which 
contains the initial guess on input to the iterative solver), and calls an individual solver 
routine. Subroutines DSICCG, DSLUGM, and DSLUOM are called to run the CG, GMRES, 
and ORTHOMIN solvers, respectively. 

 
Subroutine SOURCE 
 
• Purpose: 

1. To read source node numbers and source values for fluid mass sources and boundary 
fluxes and for diffusive and productive U sources, as well as fluxes of U at boundaries; to 
check the data; and to print information. 

 
2. To set up pointer arrays that track the source nodes for the simulation. 

 
• Called by: 

SUTRA 
 
• Calls to: 

READIF, SKPCOM, SUTERR 
 
• Description: 

SOURCE reads and organizes, checks and prints information on source nodes for fluid mass, 
and for sources of solute mass or energy. The fluid mass source information read is node 
number, mass source rate, and U value of any inflowing fluid at this node. If there are NSOP 
fluid source nodes, the node numbers become the first NSOP values in vector IQSOP. The 
rates are entered in the element corresponding to the nodes at which they are defined in 
vectors QIN and UIN, which are of length NN. The source information for U read is node 
number and solute mass or energy source rate. If there are NSOU source nodes for U, the 
node numbers become the first NSOU values in IQSOU. Vector QUIN is of length NN and 
contains the source rates in numerical order by node. Counts are made of each type of source 
and are checked against NSOP and NSOU for correctness. A blank (zero) node number ends 
the data set for QIN and then for QUIN. One blank element is left at the end of IQSOP and 
IQSOU so that a dimension of one is obtained even when no source nodes exist. These arrays 
are used primarily in NODAL and BUDGET. 
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Subroutine OUTRST 
 
• Purpose: 

To store p and U results as well as other parameters in the “.rst” file in a format ready for use 
as a “.ics” initial conditions file. This file can also act as a backup for restart in case a 
simulation is unexpectedly terminated before completion. 

 
• Called by: 

SUTRA 
 
• Description: 

OUTRST is called upon completion of each ISTORE time steps of a simulation, where the 
value of ISTORE is set by the user. OUTRST writes the most recent solution for p and U at 
the nodes to the “.rst” file, in a format exactly equivalent to that of the “.ics” input data file. 
Information is also written which is used in a warm start (restart) of the simulation. The 
results of only the most recent time step are stored in the “.rst” file, as OUTRST rewinds the 
file each time before writing. 

 
Subroutine SUTERR 
 
• Purpose: 

To handle SUTRA, iterative solver, and Fortran READ errors. 
 
• Called by: 

Main program, BANWID, BOUND, CONNEC, ELEMN2, ELEMN3, FOPEN, INDAT0, 
INDAT1, INDAT2, READIF, SKPCOM, SOLWRP, SOURCE, SUTRA 

 
• Calls to: 

PRSWDS 
 
• Description: 

SUTERR acts as the clearinghouse for errors that occur during a SUTRA run.  When an 
input data error, nonconvergence of iterations to resolve nonlinearities, an iterative solver 
error, or a Fortran READ error occurs, SUTERR is called. SUTERR reports the error, along 
with a concise description, and terminates the run. 

 
Subroutine SUTRA 
 
• Purpose: 

1. To act as primary control on SUTRA simulation, cycling both iterations and time steps. 

2. To sequence program operations by calling subroutines for input, output and most 
program calculations. 

 
3. To carry out minor calculations. 
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• Called by: 
 

Main program 
 
• Calls to: 

ADSORB, BANWID, BC, BCTIME, BOUND, BUDGET, CONNEC, ELEMN2, ELEMN3, 
INDAT1, INDAT2, NODAL, OUTLST2, OUTLST3, OUTNOD, OUTELE, OUTOBS, 
PTRSET, SOLVER, SOURCE, OUTRST, SUTERR, ZERO 

 
• Description: 

Subroutine SUTRA initializes certain constants and directs the reading of  “.inp” input data 
by calls to INDAT1, SOURCE, BOUND, and CONNEC. It calls for bandwidth calculation 
(BANWID) and setting of pointers used in matrix storage (PTRSET). Then subroutine 
SUTRA directs a call to INDAT2 to read initial conditions from the “.ics” file, and calls 
OUTLST2 (for 2D) or OUTLST3 (for 3D) to print the initial conditions to the “.lst” file. 
 
The subroutine decides on cycling parameters if steady state pressures will be calculated, and 
calls ZERO to initialize arrays. For transient pressure solution steps, time-step cycling 
parameters are set and a decision is made as to which (or both) of p and U will be solved for 
on this time step. The decision depends on NPCYC and NUCYC, and subroutine SUTRA 
sets the switch, ML, as follows: 
   0 solve for both p and U 
  1 solve for p only 
  2 solve for U only 
 
The switch for steady state flow is ISSFLO, which is set as follows: 
 
 

ML = 

ISSFLO = 
  0 steady flow not assumed 

 1 steady flow assumed, before pressure time step 
 2 steady flow assumed, after beginning of pressure time step 
 
Note that time step number, IT, is set to zero for the steady p solution, and increments to one 
for the first transport time step. 
 
Subroutine SUTRA increments the simulation clock, TSEC, to the time at the end of the new 
time step, and shifts new vectors to previous level vectors, which begins the time step. 
BCTIME is called to set time-dependent sources and boundary conditions if such exist. 
ADSORB is called if sorption is required. The element-by-element calculations required to 
construct the matrix equations are carried out by a call to ELEMN2 (for 3D) or ELEMN3 
(for 3D). NODAL is called to carry out nodewise and cellwise calculations for the global 
matrices. BC is called to modify the matrix equations for boundary conditions. 
 
SOLVE is called for p and or U solution (depending on the value of ML), and if iterations to 
resolve nonlinearities are underway, convergence is checked. If iterations are continued, 
control switches back to the step, which shifts new to old vectors, and the sequence of calls is 
repeated. If no more iterations are required, SUTRA may call OUTLST2 (for 2D) or 
OUTLST3 (for 3D) to print results to the “.lst” file if these are requested on the present time 
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step. BUDGET is called if budget output is requested to the “.lst” file on this time step.  
OUTNOD, OUTELE, and OUTOBS are called to print nodewise results to the “.nod” file, 
elementwise results to the “.ele” file, and observation data to the “.obs” file, respectively, if 
these are requested on the present time step. 
 
If more time steps are to be undertaken, control switches back to the step that initializes 
arrays, and continues down from that point. If the simulation is complete, OUTRST is called 
if the store option has been selected to set up a “.rst” restart file. At this point, control returns 
to the main program. 

 
Subroutine TENSYM 
 
• Purpose: 

To transform a symmetric tensor between two Cartesian coordinates systems. 
 
• Called by: 

ELEMN3, INDAT1 
 
• Calls to: 

ROTMAT 
 
• Description: 

TENSYM performs the transformation [P]=[G][T], where [P] and [T] are matrices that 
represent a symmetric tensor in two different Cartesian coordinate systems, and [G] is the 
rotation matrix that transforms the input coordinate system to the output coordinate system. 
[T] is a diagonal matrix. The rotation is defined in term of three angles, ANGLE1, ANGLE2, 
and ANGLE3, which correspond to the angles A1, A2, and A3 defined in the description of 
subroutine ROTMAT. 

 
Subroutine TRISET 
 
• Purpose: 

To set up pointer arrays that define the coefficient matrix structure in SLAP “triad” format. 
 
• Called by: 

PTRSET, SOLWRP 
 
• Description: 

TRISET sets up the pointer arrays IA and JA, which define the coefficient matrix structure in 
SLAP “triad” format. The coefficient matrices for the flow (p) and transport (U) problems 
are each stored as a single-subscripted array. IA(M) and JA(M) give the matrix row and 
column indices, respectively, of the Mth entry in the matrix array. TRISET currently assumes 
that the mesh structure is logically rectangular. 
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Subroutine UNSAT 
 
• Purpose: 

A user-programmed routine in which unsaturated flow functions are specified. 
 
• Called by: 

BASIS2, BASIS3, BUDGET, INDAT2, NODAL 
 
• Description: 

UNSAT is called by INDAT2 to calculate initial saturations at nodes, by BASIS2 (for 2D) or 
BASIS3 (for 3D) at each Gauss point in each element during numerical integration, by 
NODAL for each cell, and by BUDGET for each cell. It allows the user to specify the 
functional dependence of relative permeability on saturation or pressure, and the dependence 
of saturation on pressure. UNSAT is divided into three sections. The first section requires the 
user to specify the saturation-pressure (or capillary pressure) function. The second section 
requires the user to specify the derivative or saturation with respect to pressure. The third 
section requires the user to specify the relative permeability dependence on saturation or 
capillary pressure. INDAT2 requires only values of saturation, BASIS2 and BASIS3 require 
only values of saturation and relative permeability, and NODAL and BUDGET require 
values of saturation and its pressure derivative. These calculations are controlled in UNSAT 
by the parameter IUNSAT which INDAT2 sets to a value of three, BASIS2 and BASIS3 set 
to a value of two, and NODAL and BUDGET set to one. For simulation of purely saturated 
flow, IUNSAT is set to zero by INDAT1, and UNSAT is never called. The user may 
program these functions in any convenient way, for example, through data statements, calls 
to other programs, logical structures, “read” or “write” statements, or other preferred 
methods. More information may be found in section 7.5, “User-Supplied Programming.” 
Nodes and elements may be grouped by the user into REGIONS. For each REGION, a 
different set of unsaturated flow functions may be specified in UNSAT. 

 
Subroutine ZERO 
 
• Purpose: 

To fill a real array with a constant value. 
 
• Called by: 

INDAT2, SUTRA 
 
• Description: 

ZERO fills an entire array with a specified value. 
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5.7 Iterative Solver Package 
 
SLAP (Sparse Linear Algebra Package; Seager (1989)) is a package of Fortran subroutines 
designed to implement a variety of iterative matrix solvers. The package included in SUTRA is a 
subset of SLAP version 2.0.2, which in turn is part of the SLATEC Common Mathematical 
Library (Vandevender and Haskell, 1982) version 4.1. The SLAP subroutines provided with 
SUTRA include only the double-precision versions of the CG, GMRES, and ORTHOMIN 
solvers and supporting subroutines. SLAP was not developed by the U.S. Geological Survey; 
disclaimers and programming credits appear in the code as comments. The code has undergone 
some minor modifications by the authors of SUTRA; such changes are commented in the code. 
General documentation for the double-precision SLAP routines appears in the listing of 
subroutine DLPDOC. In addition, each SLAP subroutine contains comments describing its 
purpose, usage, and arguments. 
 
SUTRA accesses the SLAP package by calling the SLAP subroutines DSICCG (for CG), 
DSLUGM (for GMRES), and DSLUOM (for ORTHOMIN) from SUTRA subroutine SOLWRP. 
In preparation for calling the SLAP solvers, SUTRA stores the coefficient matrices in SLAP 
“triad” format. If A is an array that contains the nonzeros of a coefficient matrix, then the pointer 
arrays IA and JA define the matrix structure by giving, respectively, the row and column indices 
of each entry in A; the Mth entry in array A, A(M), corresponds to the matrix element in row 
IA(M) and column JA(M) of the matrix.  The coefficient matrices for the flow (p) and transport 
(U) problems have the same structure (the same pattern of nonzeros), so one pair of pointer 
arrays IA and JA is used for both matrices. 
 
The CG (Conjugate Gradient) solver includes incomplete Cholesky preconditioning. The 
GMRES (Generalized Minimum Residual) and ORTHOMIN solvers both include incomplete 
LU preconditioning. Both GMRES and ORTHOMIN can handle nonsymmetric matrix problems, 
which arise when solving the transport equation with advection present (which is generally the 
case) or the flow equation with upstream weighting. Because the CG solver can handle only 
symmetric problems, its applicablility is, as a rule, limited to the flow equation in the absence of 
upstream weighting.  
 
CG, GMRES, and ORTHOMIN belong to the Krylov-subspace-method family of iterative 
solvers. A discussion of the theory underlying these solvers and their particular implementation 
in the SLAP package is beyond the scope of this document. The methods are well established 
and are described in detail in texts that discuss sparse linear system solvers. 
 

138 



 

SUTRA SIMULATION EXAMPLES 
 
 

 





 

Chapter 6: Simulation Examples 
 
This chapter outlines a number of example simulations that serve to demonstrate some of the 
capabilities of SUTRA modeling. Some of the examples show results that are compared with 
analytical solutions or numerical solutions available in the literature. These results serve to verify 
the accuracy of SUTRA algorithms for a broad range of flow and transport problems. The other 
examples demonstrate physical processes that SUTRA may simulate in systems where no other 
solutions are available. 
 
 
6.1 Pressure Solution for Radial Flow to a Well (Theis Analytical Solution) 
 
Physical Setup: 
 
A confined, infinite aquifer contains a fully penetrating withdrawal well. Fluid is pumped out at 
a rate of QTOT. 
 
Objective: 
 
To simulate transient drawdown in this system, which should match the Theis solution. In terms 
of variables used in SUTRA, the Theis solution (Lohman, 1979) is given by: 
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where s* is the drawdown, W(u) is the well function of u, and 
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Figure 6.1. Radial finite-element mesh for Theis solution. 
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where r is the radial distance from the well to an observation point and t is the elapsed time since 
start of pumping. 
 
Simulation Setup: 
 
The mesh contains one row of elements with element width expanding by a constant factor, 
1.2915, with increasing distance from the well; other mesh dimensions are ∆r =2.5 [m], 
∆r =25.0 [m], r =500.0 [m], ∆z=1. [m]. Mesh thickness at node i, is given by B =2πr , which 
provides a radial coordinate system. The number of nodes and elements in the mesh are: NN=54, 
NE=26, respectively. See . 

min

max max i i

Figure 6.1
 
The initial time step is, ∆t =l. [s], with time steps increasing by a factor of 1.5 on each 
subsequent step. One pressure solution is obtained per time step and solutions for concentration 
are ignored; the cycling parameters are NPCYC=1 and NUCYC=9999. 

o

 
Parameters: 
 
 S  = 1.039 x 10–6 [m  s /kg] ε = 0.20 2

op
 
 α = 1.299 x 10  [m  s /kg] k = 2.0387 x 10  [m ] –10–6 2 2

 
 β = 4.4 x 10–10 [m  s2/kg] ρ = 1000. [kg/m3] 
 
 | g | = 9.81 [m/s2] 
 
 QTOT = 0.6284 [kg/s] (one half at each well node) 
 
Boundary Conditions: 
 
No flow occurs across any boundary except where hydrostatic pressure is specified at rmax. At the 
top outside corner of the mesh, rmax, pressure is held at zero. A sink is specified at r=0 to 
represent the well. 
 
Initial Conditions: 
 
Hydrostatic pressure with p=0.0 at the top of the aquifer is set initially. 
 
Results: 
 
SUTRA results are plotted for two locations in the mesh representing observation wells at 
r=15.2852 [m] and r=301.0867 [m]. Both locations should plot on the same Theis curve. The 
match of SUTRA results between 1 and 6000 minutes with the Theis analytical solution shown 
in Figure 6.2 is good. 
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Figure 6.2. Match of Theis analytical solution (solid line) with SUTRA solution (+). Radial position, r, 
and drawdown, s*, are in meters; time, t, is in minutes. 

 
 
 
6.2 Radial Flow with Solute Transport (Analytical Solutions) 
 
Physical Setup: 
 
A confined infinite aquifer contains a fully penetrating injection well. Fluid is injected at a rate 
of QTOT, with a solute concentration of C*. The aquifer initially contains fluid with solute 
concentration Co. The fluid density does not vary with concentration. 
 
Objective: 
 
To use 2D SUTRA to simulate the transient propagation of the solute front as it moves radially 
away from the well. The concentrations should match the approximate analytical solutions of 
Hoopes and Harleman (1967) and Gelhar and Collins (1971). 
 
The solution of Gelhar and Collins (1971) is: 
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where 
 ( )2

1

At2r* =    (6.3a) 
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The Hoopes and Harleman (1967) solution is obtained by replacing r* in the denominator of (6.2) 
with r. 
 
Simulation Setup: 
 
The mesh consists of one row of elements with element width expanding from ∆rmin=2.5 [m] by 
a factor, 1.06, to r=395.0 [m], and then maintaining constant element width of ∆r=24.2 [m] to 
rmax=1000.0 [m]. Element height, b, is 10. [m]. Mesh thickness is set for radial coordinates, 
Bi=2πri, with the number of nodes and elements given by NN=132 and NE=65, respectively. See 
Figure 6.3. 
 
The time step is constant at ∆t=4021.0 [s] and outputs are obtained for times steps numbered 
225, 450, 900, 1800. One pressure solution is carried out to obtain a steady state, (ISSFLO=1), 
and one concentration solution is done per time step (NUCYC=1). 
 

 
Figure 6.3. Radial finite-element mesh for constant-density solute- and energy-transport examples. 

 
 
Parameters: 
 
 Sop = 0.0 [m  s2/kg] ρ = 1000. [kg/m3] 
 

k = 1.02x10–11 [m2] Dm = 1.x10–10 [m2/s]  
 
 ε = 0.2 αL = 10.0 [m] 
 
 µ = 1.0x10–3 [kg/m  s] αT = 0.0 [m] 
 
 | g | = 9.8 [m/s2] C* = 1.0 

 QTOT = 62.5 [kg/s] (one half at each well node) 
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Boundary Conditions: 

No flow occurs across any boundary except where hydrostatic pressure is specified at rmax. At 
the top outside corner of the mesh, rmax, pressure is held at zero. A source is specified at r = 0.0 
to represent the injection well. 
 
Initial Conditions: 

Initially hydrostatic pressure is set with p = 0.0 at the aquifer top. Initial concentration, Co, is set 
to zero. 
 
Results: 

SUTRA results after 225, 450, 900 and 1800 time steps are compared with the approximate 
analytical solutions of Gelhar and Collins (1971) and Hoopes and Harleman (1967) in Figure 6.4. 
The analytical solutions are approximate, and they bound the SUTRA solution at the top and 
bottom of the solute front. All solutions compare well with each other, and the SUTRA solution 
may be considered more accurate than either approximate analytic solution because it makes no 
simplifying assumptions to solve the governing equations and is based on a very fine spatial and 
temporal discretization of the governing equation. 
 

 
 

Figure 6.4. Match of analytical solutions for radial solute transport of Hoopes and Harleman (1967) 
(dashed), Gelhar and Collins (1971), (solid), and SUTRA solution (dash-dot). Number of elapsed 
time steps is n. 
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6.3 Radial Flow with Energy Transport (Analytical Solution) 
 
Physical Setup: 

A confined aquifer contains a fully penetrating injection well. Fluid is injected at a rate of QTOT, 
with a temperature of T*, into the aquifer initially at a temperature of To. For this problem, 
density, ρ, and viscosity, µ, are kept approximately constant by injecting fluid that only slightly 
differs in temperature from the ambient fluid; i.e., (T*-To) is small. 
 
Objective: 

To use 2D SUTRA to simulate the transient propagation of the temperature front as it radially 
moves away from the well. The solution should match an approximate analytical solution of 
Gelhar and Collins (1971) modified for energy transport. The Gelhar and Collins (1971) 
solution, as modified for energy transport is: 
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The energy solution above may be obtained from the solute solution by retarding the velocity of 
transport to represent movement of an isotherm rather than a parcel of solute. This is done by 
accounting for energy storage in the solid grains of the aquifer material in the storage term of the 
analytical solution. 
 
Simulation Setup: 
 
The mesh used for this example is the same as for the radial solute-transport example (section 
6.2). Time steps and frequency of SUTRA outputs are the same as for the radial solute-transport 
example. Further, cycling of the SUTRA solution is the same as for the radial solute-transport 
example. 
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Parameters: 

 cw = 4182. [J/kg  °C] Sop = 0. [m  s2/kg] 
 
 cs = 840. [J/kg  °C] k = 1.02x10–11 [m2] 
 
 λw = 0.6 [J/s  m  °C] ε = 0.2 
 
 ρ = 1000. [kg/m3] 
 
 λs = 3.5 [J/s  m  °C] 
 
 ρs = 2650. [kg/m3] | g | = 9.8 [m/s2] 
 

 
T∂
ρ∂ = 0.0 αL = 10. [m] 

 
  µ = µ (T) (relation (2.5))  αT = 0. [m] 
 
 QTOT = 312.5 [kg/s] (one half at each well node) 
 
 T* = 1.0 [°C] 
 

 
 

Figure 6.5. Match of analytical solution for radial energy transport modified from Gelhar and Collins 
(1971) (solid line) with SUTRA solution (dashed line). Number of elapsed time steps is n. 
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Boundary Conditions: 
 
No flow occurs across any boundary except where hydrostatic pressure is specified at rmax. At the 
top outside corner of the mesh, pressure is held at zero. A source is specified at r = 0.0 to 
represent the injection well. Further, the system is thermally insulated along the top and bottom 
of the mesh. 
 
Initial Conditions: 
 
Initially, hydrostatic pressure is set with p = 0.0 at the top of the aquifer. The initial temperature 
is To = 0.0 [°C]. 
 
Results: 
 
SUTRA results after 225, 450, 900 and 1800 time steps are compared with the approximate 
(modified) analytical solution of Gelhar and Collins (1971) in Figure 6.5. The analytical solution 
has the same relation to the SUTRA solution as it does in Figure 6.4 for solute transport. Thus, 
the match is good, and again the SUTRA result may be more accurate than the approximate 
analytic result. 
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6.4 Areal Constant-Density Solute Transport (Example at Rocky Mountain Arsenal) 
 
Physical Setup: 
 
This example involves a simple representation of ground-water flow and solute transport at the 
Rocky Mountain Arsenal, Denver, Colorado, which is based on the detailed model of the system 
by Konikow (1977). The simplified representation consists of an areal model of a rectangular 
alluvial aquifer with a constant transmissivity and two impermeable bedrock outcrops which 
influence groundwater flow. (See Figure 6.6.) 
 

 
 

Figure 6.6. Idealized representation for example at Rocky Mountain Arsenal, and finite-element 
mesh. Upper shaded square is the pond, shaded rectangles are impermeable zones, and three 
circles are wells. 
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Regional flow is generally from the southeast to the northwest where some discharge occurs at 
the South Platte River. This is idealized as flow originating in a constant head region at the top of 
the rectangle in Figure 6.6, and discharging to the river at the bottom of the rectangle, which also 
acts as a specified head region. Three wells pump from the aquifer (at a rate of QOUT each), and 
contamination enters the system through a leaking waste isolation pond (at a rate of QIN, with 
concentration, C*). The natural background concentration of the contaminant is Co. 
 
Objectives: 
 
1) To demonstrate the applicability of SUTRA to simulate an areal (2D) constant-density solute 
transport problem. 2) To convert SUTRA input data values so the pressure results represent 
heads, and the concentration results are in [ppm]. 3) To simulate steady-state flow and 
hypothetical steady-state distributions of the contaminating solute, both as a conservative solute, 
and as a solute that undergoes first order decay, assuming that the contamination source in the 
idealized system is at a steady state. 4) To test the ability of SUTRA to give the same results in 
3D when the 2D problem is “extruded” into the third dimension, i.e., when the problem is 
formulated so that the solution varies in any two of the three coordinate directions, but not in the 
third direction. 
 
Simulation Setup: 
 
The rectangular mesh consists of 16 by 20 elements each of dimension 1000.0 [ft] by 1000.0 [ft], 
as shown in Figure 6.6. (NN=357, NE=320). Mesh thickness, B, is the actual aquifer thickness, 
assumed constant for the idealized model. 
 
One steady-state pressure solution is obtained (ISSFLO=1), and one concentration solution is 
obtained. The concentration solution is obtained after a single time step of 1000. years, which, 
for all practical purposes, brings the concentration distribution to a steady state. 
 
The leaky pond is simulated as an injection of fluid (QIN, C*) at a single node. Where the 
impermeable bedrock outcrop occurs, elements are assigned a conductivity value one millionth 
of the aquifer values. A single value of constant head is specified along a portion of the top 
boundary, and a series of head values is specified along the bottom (river) boundary to represent 
changing elevation of the river. 
 
To obtain results in terms of hydraulic head and [ppm], the following must be specified: ρ=1.0, 
∂ρ/∂c =0.0, g =0.0, µ=1.0. Hydraulic conductivities are entered in the permeability input data set. 
Head values in [ft] are entered in data sets for pressure. Concentrations in [ppm] are entered in 
data sets for mass fraction concentration. Sources and sinks are entered in units of volume per 
time. 
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Figure 6.7. Nearly steady-state conservative solute plume as simulated for the Rocky Mountain 
Arsenal example by SUTRA. 
 

 
Figure 6.8. Nearly steady-state solute plume (with solute half life ~ 20. years) as simulated for the 
Rocky Mountain Arsenal example by SUTRA. 
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Parameters: 
 
 αL = 500. [ft]  QIN = 1.0 [ft3/s] 
 
 αT = 100. [ft]  C* = 1000. [ppm] 
 
 ε = 0.2  Co = 10. [ppm] 
 

K = 2.5x10–4 [ft/s]  QOUT = 0.2 [ft3/s]  
 (hydraulic conductivity) (at each of three wells) 
 
 B = 40. ft 
 
Boundary Conditions: 
 
No flow occurs across any boundary except where constant head is specified at 250.0 [ft] at the 
top of the mesh and where constant head is specified as changing linearly between 17.5 [ft] at the 
bottom left corner, and 57.5 [ft] at the bottom right corner of the mesh. Inflow at the top of the 
mesh is at background concentration, Co=10.0 [ppm]. A source is specified at the leaky pond 
node, and a sink is specified at each well node. 
 
Initial Conditions: 
 
Initial pressures are arbitrary for steady-state simulation of pressure. Initial concentration is 
Co=10.0 [ppm]. 
 
Results: 
 
A nearly steady-state solute plume for a conservative solute is obtained after a 1000 year time 
step shown in Figure 6.7. For a solute which undergoes first order decay with decay coefficient, 
γ=l.lx10–9 [s–1] (approximately a 20 year half life), the nearly steady plume is shown in Figure 
6.8. Just upstream of the plume envelope is a region in which concentration dips slightly below 
background levels. This is due to a numerical problem of insufficient spatial discretization in a 
region where the concentration must change sharply from fresh upstream values to contaminated 
plume values. Lower dispersivity values would exacerbate the problem in the upstream region, 
but minor upstream oscillations do not affect concentration values within the plume.  
 
Results of three simulations using SUTRA in 3D with the areal problem formulated in the (x,y), 
(x,z) and (y,z) coordinates, respectively, and extruded into the third dimension are each 
equivalent to those obtained using SUTRA in 2D . 
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6.5 Density-Dependent Flow and Solute Transport (Henry (1964) Solution for Seawater 

Intrusion) 
 
Physical Setup: 
 
This problem involves seawater intrusion into a confined aquifer studied in cross section under 
steady conditions. Freshwater recharge inland flows over saltwater in the section and discharges 
at a vertical sea boundary. 
 
The intrusion problem is nonlinear and may be solved by approaching the steady state gradually 
with a series of time steps. Initially there is no saltwater in the aquifer, and at time zero, saltwater 
begins to intrude the freshwater system by moving under the freshwater from the sea boundary. 
The intrusion is caused by the greater density of the saltwater. 
 
Dimensions of the problem are selected to make for simple comparison with the steady-state 
dimensionless solution of Henry (1964), and with a number of other published simulation 
models. A total simulation time of t=100.0 [min], is selected, which is sufficient time for the 
problem to essentially reach steady state at the scale simulated. 
 
Objective: 
 
1) To compare SUTRA results with the solution of Henry (1964), and with other published 
simulation results. 2) To test the ability of SUTRA to give the same results in 3D when the 2D 
problem is “extruded” into the third dimension, i.e., when the problem is formulated so that the 
solution varies in any two of the three coordinate directions, but not in the third direction. 
 
 

 
Figure 6.9. Boundary conditions and finite-element mesh for Henry (1964) solution. 
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Simulation Setup: 
 
The mesh consists of twenty by ten elements, each of size 0.1 [m] by 0.1 [m], (NN=231, 
NE=200). Mesh thickness, B, is 1.0 [m]. See Figure 6.9. Time steps are of length 1.0 [min], and 
100 time steps are taken in the simulation. Both pressure and concentration are solved for on 
each time step (NUCYC=NPCYC=1). 
 
A source of freshwater is implemented by employing source nodes at the left vertical boundary, 
which inject freshwater at a rate of QIN, and concentration of CIN. The right vertical boundary is 
held at hydrostatic pressure of seawater through the use of specified pressure nodes. Any water 
that enters the section through these nodes has the concentration of seawater (CBC = Csea). 
 
Parameters: 
 
 ε = 0.35  k = 1.020408x10–9 [m2] 
   (based on K=1.0x10–2 [m/s]) 
 

 Csea = 0.0357 
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  (divided among 11 nodes at left boundary) 
 
Boundary Conditions: 
 
No flow occurs across the top and bottom boundaries. A freshwater source is set along the left 
vertical boundary. Specified pressure is set at hydrostatic seawater pressure with (ρsea=1024.99 
[kg/m3]) along the right vertical boundary. Any inflowing fluid at this boundary has the 
concentration, Csea=0.0357 [kg(dissolved solids)/kg(seawater)], of seawater. 
 
Initial Conditions: 
 
Natural steady pressures are set everywhere in the aquifer based on the freshwater inflow, zero 
concentration everywhere, and the specified pressures at the sea boundary. These initial 
conditions are obtained through a preliminary simulation that calculates steady pressures under 
these conditions. 
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Results: 
 
Henry’s solution assumes that dispersion is represented by a constant large coefficient of 
diffusion, rather than by velocity-dependent dispersivity. Two different values of this diffusivity 
have apparently been used in the literature by those testing simulators against Henry’s solution. 
The total dispersion coefficient of Henry (1964), D, is equivalent to the product of porosity and 
molecular diffusivity in SUTRA, D = εDm. 
 
Henry’s results are given for his nondimensional parameters ξ = 2.0, b = 0.1, a ≅ 0.264 (page 
C80—Figure 34 in Henry (1964)). To match the Henry parameters using simulation parameters 
as listed above, values of D = 6.6x10–6 [m2/s] and Dm = 18.8571x10–6 [m2/s] are required. Some 
authors, however, have apparently used a value equivalent to Dm = 6.6x10–6 [m2/s] and 
D = 2.31x10–6 [m2/s], which differs from the Henry parameters by a factor equal to the porosity. 
 
In the previous model solutions compared here, only Huyakorn and Taylor (1976) have 
employed the higher value of diffusivity, which should match Henry’s solution. A comparison of 
SUTRA results using the higher diffusivity value with those of Huyakorn and Taylor (1976) 
along the bottom of the section at t=100. [min] is shown in Figure 6.10. Huyakorn and Taylor’s 
results are for a number of simulation models based on significantly different numerical 
methods. SUTRA results are also shown for the lower diffusivity value. The results of 
simulations using the higher diffusivity value compare favorably. Results using the higher value 
have also been obtained with the INTERA (1979) finite-difference code at t=100. [min] (with 
centered-in-space and centered-in-time approximations). These are compared with SUTRA and 
the Henry solution for the 0.5 isochlor in Figure 6.11. The models match well but do not 
compare favorably with the analytical solution, which is approximate and may not be as accurate 
as the numerical solutions. 
 

 
Figure 6.10. Match of isochlors along bottom of aquifer for numerical results of Huyakorn and Taylor 
(1976) and SUTRA. 
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For the lower value of diffusivity, Dm = 6.6x10–6 [m2/s], (which should not compare with the 
Henry result), the SUTRA solution at t=100. [min] is compared in Figure 6.12 with that of 
Pinder and Cooper (1970) (method of characteristics), Segol et. al. (1975) (finite elements), 
Desai and Contractor (1977) (finite elements–coarse mesh), and Frind (1982) (finite elements). 
The match of the numerical 0.5-isochlor solutions is remarkably good; however, it should be 
noted that none of these match the analytical solution. 
 
Results obtained using SUTRA in 3D with the problem formulated in the (x,y), (x,z) and (y,z) 
coordinates, respectively, and extruded in the third dimension are each equivalent to those 
obtained using SUTRA in 2D . 
 

 
Figure 6.11. Match of isochlor contours for Henry analytical solution (for 0.50 isochlor) (long dashes), 
INTERA code solution (short dashes), SUTRA solution (solid line). 

 

 
Figure 6.12. Match of 0.50 isochlor contours for Henry problem with simulated results for Dm = 6.6 x 
10–9 [m2/s] of Pinder and Cooper (1970), (short dashes), Segol, et. al. (1975) (dotted line), Frind 
(1982) (long and short dashes), Desai and Contractor (1977) (long dashes). SUTRA results at 
isochlors (0.25, 0.50, 0.75) (solid line). Henry (1964) solution for Dm = 18.8571 x 10–9 [m2/s], (0.50 
isochlor, dash-dot).
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6.6 Density-Dependent Radial Flow and Energy Transport (Aquifer Thermal Energy 
Storage Example) 

 
Physical Setup: 
 
This is an example of aquifer thermal energy storage. Hot water is injected into an aquifer for 
storage and later withdrawn and used as an energy source. The fully penetrating injection wells 
are emplaced in a well field in a hexagonal packing pattern. The wells are at the vertices of 
contiguous equilateral triangles with sides of 500.0 [m]. This gives approximately radial 
symmetry to physical processes surrounding an interior well. 
 
Objective: 
 
To simulate the initial injection-withdrawal cycle at an interior well consisting of 90 days of 
injection (at QIN) of 60 [°C] water into the aquifer initially at 20 [°C], and 90 days of withdrawal 
(at -QIN) producing the stored water. Degradation of recovered fluid temperature should occur 
due to thermal conduction, dispersion, and tipping of the thermal front. The front should tip as 
less dense, less viscous hot water rises over colder, denser, and more viscous formation water. 
 
Simulation Setup: 
 
The mesh is 30.0 [m] high with a vertical spacing between nodes of 3.0 [m]. The first column of 
elements has width ∆rmin = 1.0 [m], and element width increases with each column by a factor, 
1.1593, to a final column of width, ∆rmax = 35.0 [m]. The outside boundary of the mesh is at 
rmax = 246.0 [m]. See Figure 6.13. Mesh thickness, B, at any node i, is Bi = 2πri, giving 
cylindrical symmetry. The number of nodes and elements in the mesh is given by NN=286 and 
NE=250, respectively. 
 
 

 
Figure 6.13. Radial two-dimensional finite-element mesh for aquifer thermal energy storage example.
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The time step is constant at ∆t = 3.0 [days]. One pressure solution and one temperature solution 
is obtained at each time step (NPCYC=NUCYC=1). The storage coefficient is assumed 
negligible, resulting in a steady flow field at any time step. Subroutine BCTIME is programmed 
to control the well rate, which changes after 90 days from fluid injection to fluid withdrawal. 
This may also be accomplished by stopping the simulation after 90 days and restarting with fluid 
withdrawal, using the restart (“.rst”) file as the initial conditions (“.ics”) file. 
 
A time-dependent fluid source is specified at the left vertical boundary (center axis), which 
injects 60. [°C] water for 90 days and then withdraws ambient water for 90 days. The right 
vertical boundary is held at hydrostatic pressure for water at 20. [°C]. Any inflow at this 
boundary has a temperature of 20. [°C]. Thermally insulated and impermeable conditions are 
held at the top and bottom of the mesh. 
 
Parameters: 
 
 cw = 4182. [J/kg  °C] Sop = 0 [m  s2/kg] 
 
 cs = 840. [J/kg  °C] k = 1.02 x 10–10 [m2] 
 
 λw= 0.6 [J/s  m  °C] ε = 0.35 
 
 λs= 3.5 [J/s  m  °C] ρo = 1000. [kg/m3] 
 
 To = 20. [°C] ρs = 2650. [kg/m3] 
 

 
T∂
ρ∂ = –0.375 [kg/m3  

°C] µ = µ(T) (relation (2.5)) 

 
 T* = 60. [°C] g  = 9.81 [m/s2] 
 
 QTOT = 200. [kg/s] αL = 4.0 [m] 
    (distributed along well)  
  αT = 1.0 [m]  
   
 
Boundary Conditions: 
 
Conditions of no flow and thermal insulation are held at all boundaries except where hydrostatic 
pressure at T = 20.0 [°C] is specified at rmax. At the top outside corner of the mesh the pressure 
is held at zero. A time-dependent source is specified at r = 0.0 to represent the injection-
withdrawal well. 
 
Initial Conditions: 
 
Hydrostatic pressure is specified initially, with p = 0.0 at the top of the aquifer. The initial 
temperature is set to To = 20.0 [°C]. 
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Results: 
 
SUTRA results during injection after 30 days and 90 days are shown in Figure 6.14 and Figure 
6.15. Simulated results during withdrawal are shown in Figure 6.16, Figure 6.17, and Figure 6.18 
after 30 days, 60 days, and 90 days of withdrawal. The thermal transition zone (between hot and 
cold water) widens throughout the injection-production cycle, due to both dispersion and heat 
conduction. The top of the transition zone tips away from the well during the entire cycle, due to 
the buoyancy of the hotter water. These two effects combine to cause cooler water to reach the 
bottom of the withdrawal well much earlier than if no density differences or dispersion existed. 
In addition, although the same quantity of water has been removed as injected, energy is lost to 
the aquifer during the cycle as seen at the end of simulation. 

 

 
Figure 6.14. SUTRA results after 30 days of hot water injection. 

 

 
Figure 6.15. SUTRA results after 90 days of hot water injection. 
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Figure 6.16. SUTRA results after 30 days of pumping, (120 days total elapsed time.) 

 

 
Figure 6.17. SUTRA results after 60 days of pumping, (150 days total elapsed time.) 

 

 
Figure 6.18. SUTRA results after 90 days of pumping, (180 days total elapsed time.) 
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6.7 Constant-Density Unsaturated Flow and Solute Transport (Example from Warrick, 

Biggar and Nielsen (1971)) 
 
Physical Setup: 
 
Water containing solute infiltrates an initially unsaturated solute-free soil for about two hours. 
Solute-free water continues to infiltrate the soil after the initial two hours. The moisture front and 
a slug of solute move downward through the soil column under conservative, nonreactive, 
constant-density transport conditions, as described in a field experiment by Warrick, Biggar, and 
Nielsen (1971). 
 
Objective: 
 
To simulate the transient propagation of the moisture front and solute slug as they move 
downwards through the soil column, under a simulation setup equivalent to that used by Van 
Genuchten (1982) to represent the field experiment. The solutions should match the best fine 
grid, fine time step simulation results of Van Genuchten (1982), which were obtained with a 
number of different finite difference and finite element numerical methodologies. 
 
Simulation Setup: 
 
The mesh consists of a single 2.0 [m] long and 0.01 [m] wide vertical column of 100 elements 
oriented in the direction of gravity. The number of nodes and elements is NN = 202 and NE = 
100, respectively. Each element is 0.01 [m] wide and 0.02 [m] high. Mesh thickness is 1.0 [m]. 
The vertical coordinate, x, is measured downward from the top of the column. 
 
The time step is constant at ∆t = 30.0 [s], and because of the small time step, only one iteration is 
done per step. The simulation is carried out for nine hours of infiltration. 
 
Outputs are obtained once each hour, but are only compared at two hours and nine hours. There 
is one pressure solution and one concentration solution each time step. 
 
Parameters: 
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 Sop = 0.0 [m  s2/kg] ρ= 1000. [kg/m3] 
 

k = 4.4558x10–13 [m2] σw = 0.0 [m2/s]  
 
 ε= 0.38 αL = 0.01 [m] 
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 µ = 1.0 x 10–3 [kg/m  s] αT = 0.0 [m] 
 
 | g | = 9.81 [m/s2] 

 
Boundary Conditions: 
 
The top boundary, which represents an infiltration pond, is held fully saturated, Sw = 1.0 (water 
content εSw = 0.38) during the simulation by specification of pressure at 
p = -1421.96 [kg/(m  s2)]. The bottom boundary is held at a specified saturation of 
Sw = 0.526316, (water content εSw = 0.20) by specification of pressure, p = –15616.5 
[kg/(m  s2)]. No flow occurs across either side boundary, but flow enters the top boundary due to 
the pressure specification. The concentration of inflowing fluid at the top is held at 
C = 209.0 [meq/liter] until time t = 168.0 [min], at which time the concentration of the inflow 
drops to C = 0.0 [meq/liter]. Note that the concentration units are arbitrary (need not be mass 
fractions) because this is a constant-density simulation. 
 

Initial Conditions: 
 
Initially, pressures are set to obtain the following initial distribution of saturation, shown in 
Figure 6.19: 
 

 ( ) [ ]
[ ]




≤<
≤<+

==
m25.1x6.0526316.0
m60.0x0.0x219289.0394737.0

0t,xSw  (6.12) 

 
Initial concentrations are set to zero. 
 

Results: 
 
SUTRA results after two hours and nine hours of infiltration are shown with the finely 
discretized solutions of Van Genuchten (1982) for saturation in Figure 6.19, and for 
concentration in Figure 6.20. The results coincide almost exactly for both early and late time, so 
only one curve can be shown for each time. Although the SUTRA results are obtained with a 
noniterative solution and small time steps, similar results may be obtained with longer time steps 
and a few iterations per step. The concentration front lags behind the moisture front, as the 
volume between the concentration front and top boundary represents the water that has 
infiltrated. The volume of water between the moisture front and concentration front represents 
the initial water in the medium that has been displaced by the infiltrating water. 
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Figure 6.19. Propagation of moisture front for unsaturated flow and solute-transport example. 
Results of Van Genuchten (1982) and SUTRA shown in same solid line. The lowest curve is the 
initial condition. 

 
 
 

 
Figure 6.20. Propagation of solute slug for unsaturated flow and solute-transport example. Results of 
Van Genuchten (1982) and SUTRA shown in same solid line. 
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6.8  Variable-Density Saturated-Unsaturated Flow and Solute Transport (Comparison of 

2D-Radial and Fully 3D SUTRA Solutions) 
 
Physical Setup: 

A circular island in the sea undergoes a prolonged drought, during which the water table declines 
to sea level, and all ground water beneath the island becomes saline. Then, renewed freshwater 
recharge finally restores the island’s freshwater lens. This example concerns simulation of the 
post-drought recharge and restoration of the lens. 
 
Following the drought, the water table is at sea level and both the saturated aquifer below sea 
level and the unsaturated zone above sea level contain only seawater. Fresh rainwater recharge to 
the surface of the island begins and continues at a constant rate, raising the water table on the 
island, flushing out seawater, and eventually establishing a stable freshwater lens and a diffuse 
saltwater-freshwater interface. The aquifer on the island is unconfined with both unsaturated and 
saturated zones and the material properties are generally homogeneous but permeability is 
anisotropic.  
 
Objective: 

The problem is simulated twice, using both a 2D radial mesh and a fully 3D mesh. The 3D 
steady-state solution is compared with the 2D solution to verify that 3D simulation gives results 
equivalent to those obtained using the well-established 2D SUTRA code. Although the solution 
is radially symmetric, the 3D simulation must arrive at this result using rectangular (x, y, z) (not 
radial) coordinates and a finite-element mesh that does not inherently favor a radially symmetric 
solution. To reduce the size of the simulation, the 3D mesh represents only one fourth of the 
entire island, taking some advantage of radial symmetry of the 3D solution.  
 
Simulation Setup: 

The 2D mesh has 40 elements in the radial direction and 25 elements vertically, giving 
NN=1,066 and NE=1,000. See Figure 6.21. Elements are 20 m wide and 5 m high, except within 
5 m of the top surface, where they are 1 m high. Vertical discretization in the unsaturated zone is 
relatively coarse because, in this problem, the intent is to approximately locate the water table 
and the details of the saturation distribution are of less interest. Mesh thickness at node i is given 
by Bi=2πri, thereby providing a radial coordinate system. 
 
The 3D mesh is 40 by 40 elements horizontally and 25 elements vertically, giving NN=43,706 
and NE=40,000. See Figures 6.22 and 6.23. Symmetry is invoked to reduce the size of the 
problem while maintaining a fully 3D, logically rectangular mesh; only one quadrant of the 
island is simulated. The outer boundary approximates a circle of radius 800 m and is sufficiently 
distant from the island that it does not significantly influence the results.  
 
The runs are transient in both pressure and concentration. The time step size is ∆t =  6311520. s 
(0.2 yr). Because only the long-time (steady-state) behavior of the system is of interest, a single 
iteration for resolving nonlinearities is used per time step. The system essentially achieves a new 
steady state after 100 time steps (20 yr). For 2D, the direct solver is used; for 3D, the 
ORTHOMIN solver is used with a convergence tolerance of 1 x 10-13 requiring between about 10 
and 30 solver iterations for each p or C solution. 
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Figure 6.21. Boundary conditions and finite-element mesh for the 2D island model. Vertical 
exaggeration = 4x. 
 

 
 

Figure 6.22. Top view of the 3D finite-element mesh for the island model. 
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Figure 6.23. Oblique view of the 3D finite-element mesh for the island model.  Vertical exaggeration = 4x. 

Parameters: 

α = 1.0 x 10-8 [m·s2/kg]  β = 4.47 x 10-10 [m·s2/kg] 
 (The α and β values imply that Sop = 9.0447 x 10-9 [m·s2/kg].) 
 
kH = 5.0 x 10-12 [m2]  ε = 0.1 
 
kV = 5.0 x 10-13 [m2]  µ = 1.0 x 10-3 [kg/m·s] 
 
|g| = 9.81 [m/s2]  σw = 1.0 x 10-9 [m2/s] 

ρ0 = 1000. [kg/m3] 
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Boundary Conditions: 

In the 2D cylindrical model (see Figure 5.1), no flow crosses the inner boundary (the axis of 
radial symmetry, r = 0) and the bottom boundary (z = -100 m). Specified pressure is set at 
hydrostatic seawater pressure along the vertical outer boundary (r = 800 m). Along the top 
boundary, nodes above sea level (r ≤ 500 [m]) receive freshwater recharge (equivalent to 75.0 
cm/yr) totaling 18.6658 kg/s of recharge for the entire circular island. The amount of recharge at 
each node is determined by the surface area of its cell on the top surface of the cylindrical 2D 
model; the concentric ring-shaped cells have areas that increase as 2πr. In the region where the 
island surface slopes down towards the coast, 400 m ≤  r ≤  500 m, the surface area used for 
calculating recharge is the horizontal projection of this sloping area (area reduced by cosine of 
the dip angle). At nodes below sea level, the pressure is specified to be hydrostatic seawater 
pressure. Any fluid that enters at points of specified pressure has the concentration of seawater. 
The value for the specified pressure boundary condition factor, GNUP, in 2D is 1.0x10+5. 
 
In the 3D model, no flow crosses the planes of symmetry (x = 0 and y = 0). All other 3D 
boundary conditions are directly analogous to those in the 2D formulation.  The value for the 
specified pressure boundary condition factor, GNUP, in 3D is 10.0. If 2D and 3D simulations are 
set up using the graphical preprocessor, SutraGUI (Winston and Voss, 2003), small 
discrepancies may be expected between these models in some parameters, such as recharge to 
the top surface. However, despite the obvious differences in spatial discretization, according to 
the fluid budgets output by SUTRA, the total recharge to the top surface of the entire island in 
2D and 3D representations matches to five significant figures (18.665 kg/s). 
  
Initial Conditions: 

Seawater concentration and natural steady-state pressures are initially set everywhere in the 
aquifer. The natural initial pressure values are obtained through an extra initial simulation that 
calculates steady pressures for the conditions of seawater concentration throughout, zero 
recharge at the surface of the island, and specified hydrostatic pressures along the sea bottom and 
the outer boundary. 
 
Results: 

Results are reported 20 years after recharge begins, by which time the system has nearly reached 
a new steady state. (Note that more-exact steady-state solutions may be obtained by running 
longer simulations, e.g. 40 years or more.) To verify that results from the 2D and 3D models are 
consistent, solute concentrations, saturations and the water table location along a cross section of 
the 3D model at y=0 are compared with those obtained using the 2D model. See Figures 6.24 and 
6.25. Further, to verify that the 3D results are radially symmetric, concentrations at 35 m below 
sea level are plotted in Figure 6.26. This example demonstrates that (even for relatively coarse 
meshes) 2D SUTRA simulation and 3D SUTRA simulation provide consistent saturated-
unsaturated, variable-density fluid flow and solute transport results. 
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Figure 6.24. Comparison of results from the 2D and 3D models of the island problem; solute 
concentrations at t = 20 yr. Solid lines indicate 2D results. Dashed lines indicate 3D results, which 
are shown within the vertical 3D plane y = 0 m. Concentration is expressed as the fraction of 
seawater concentration.  Vertical exaggeration = 4x. 

 
  

 
 

Figure 6.25. Comparison of water saturation, Sw, results from the 2D and 3D models of the island 
problem at t = 20 yr. Thick solid line indicates 2D result. Thick dashed line indicates 3D result, which 
is shown within the vertical 3D plane y = 0 m. Thin dashed line indicates sea level. Water saturations 
of one plotted along zero pressure contours from 2D and 3D models. Vertical exaggeration = 40x. 

168 



 

 
 

Figure 6.26. Areal view of results from the 3D model of the island problem; solute concentrations at 
35 m below sea level at t = 20 yr. Concentration is expressed as the fraction of seawater 
concentration. Dashed line indicates the coastline, which is circular. 
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SUTRA SIMULATION SETUP 
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Chapter 7: Simulation Setup 
 
 
7.1 SUTRA Data Requirements 
 
The following is a complete list of data required to setup a simulation with SUTRA. (1) The 
information included in the list is the parameter name used in this report (if it has been 
mentioned), (2) the parameter units, (3) the parameter name in the input data list, and (4) a short 
explanation of the parameter. 
 
Mesh and coordinate data 

 gx [L/s2] GRAVX x-component of gravity vector 

 gy [L/s2] GRAVY y-component of gravity vector 

 gz [L/s2] GRAVZ z-component of gravity vector (3D only) 

 xi [L] X(I) x coordinate of node i, for all nodes in mesh 

 yi [L] Y(I) y coordinate of node i, for all nodes in mesh  

 zi [L] Z(I) z coordinate of node i, for all nodes in mesh 
(3D only) 

    mesh structure: 
    “2D IRREGULAR” 
   MSHSTR “2D REGULAR” 
    “2D BLOCKWISE” 
    “3D REGULAR” 
    “3D BLOCKWISE” 

 NN  NN total number of nodes in mesh 

 NN1  NN1 number of nodes in the first numbering 
direction (REGULAR or BLOCKWISE 
mesh only) 

 NN2  NN2 number of nodes in the second numbering 
direction (REGULAR or BLOCKWISE 
mesh only) 

   NN3 number of nodes in the third numbering 
direction (REGULAR or BLOCKWISE 
mesh only) 

   IIN(1-8) nodal incidence list in each element (for 2D, 
only IIN(1-4) are used) 
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 NE  NE total number of elements in mesh 

 NBI  NBI full bandwidth of global banded matrix 

   NBLK1 number of blocks in the first numbering 
direction (BLOCKWISE mesh only) 

   NBLK2 number of blocks in the second numbering 
direction (BLOCKWISE mesh only) 

   NBLK3 number of blocks in the third numbering 
direction (3D BLOCKWISE mesh only) 

   LDIV1 list of number of elements into which to 
divide blocks along first numbering 
direction (BLOCKWISE mesh only) 

   LDIV2 list of number of elements into which to 
divide blocks along second numbering 
direction (BLOCKWISE mesh only) 

   LDIV3 list of number of elements into which to 
divide blocks along third numbering 
direction (3D BLOCKWISE mesh only) 

 
Flow parameters 

 β [M/(L s2)]-1 COMPFL fluid compressibility 

 α [M/(L s2)]-1 COMPMA solid matrix compressibility 

  [1] VISC0 for energy transport: scale factor for fluid 
viscosity 

 µ    or 

  [M/(L s)] VISC0 for solute transport: fluid viscosity 

 εi [1] POR(I) volumetric porosity of solid matrix at each 
node 

  [L
Lmaxk 2] PMAX(L) maximum component of permeability in 

each element 

  [L
Lmidk 2] PMID(L) middle component of permeability in each 

element (3D only) 

  [L
Lmink 2] PMIN(L) minimum component of permeability in 

each element 
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 θL or θ1L [°] ANGLE1(L) angle from +x-axis to kmax-axis in each 

element, measured within x,y-plane; denoted 
by θL in 2D and by θ1L in 3D 

 θ2L [°] ANGLE2(L) angle from x,y-plane to kmax-axis in each 
element, measured vertically from x,y-plane 
(3D only) 

 θ3L [°] ANGLE3(L) angle from x,y-plane to kmid-axis in each 
element, measured as counterclockwise 
rotation about kmax-axis (looking down 
+kmax-axis toward origin) (3D only) 

 ρo [M/L3] RHOW0 fluid base density 

  [M/L3 °C] DRWDU for energy transport: coefficient of fluid 
density change with temperature 

 
U
ρ

∂
∂       or 

  [M2/L3 Ms] DRWDU for solute transport: coefficient of fluid 
density change with concentration 

  [°C] URHOW0 for energy transport: base temperature for 
density calculation 

 Uo      or   

  [Ms/M] URHOW0 for solute transport: base concentration for 
density calculation 

 
Transport parameters 

  [L] ALMAX (L) radius of longitudinal dispersivity ellipse 
(2D) or ellipsoid (3D) in direction of k

LLmaxα
max in 

each element 

  [L] ALMID (L) radius of longitudinal dispersivity ellipsoid 
in direction of k

LLmidα
mid in each element (3D 

only) 

  [L] ALMIN (L)
LLminα  radius of longitudinal dispersivity ellipse 

(2D) or ellipsoid (3D) in direction of kmin in 
each element 

  [L] ATMAX (L) radius of transverse dispersivity ellipse (2D) 
or ellipsoid (3D) in direction of k

LTmaxα
max in each 

element 
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  [L] ATMID (L) radius of transverse dispersivity ellipsoid in 

direction of k
LTmidα

mid in each element (3D only) 

  [L] ATMIN (L)
LTminα  radius of transverse dispersivity ellipse (2D) 

or ellipsoid (3D) in direction of kmin in each 
element 

 
  [E/(L °C s)] SIGMAW for energy transport: fluid thermal 

conductivity 
 σw   or 

  [m2/s] SIGMAW for solute transport: molecular diffusivity of 
solute in fluid 

 σs [E/(L °C s)] SIGMAS for energy transport: solid grain thermal 
conductivity (equals zero for solute 
transport) 

 cw [E/(M °C)] CW for energy transport: fluid specific heat 
capacity (equals one for solute transport) 

 cs [E/(M °C)] CS for energy transport: solid grain specific heat 
capacity (not specified in input data for 
solute transport) 

 ρs [M/L3] RHOS density of a solid grain in the solid matrix 

 
Reaction and production parameters 
 

Linear Sorption Isotherm 

 χ1 [ fL /M3
G] CHI1 linear distribution coefficient (2.34a)  

(χ2 is zero for this isotherm) 
 

Freundlich Sorption Isotherm 

 χ1 [ fL /M3
G] CHI1 Freundlich distribution coefficient (2.35a) 

 χ2 [1] CHI2 Freundlich coefficient (2.35a) 
 

Langmuir Sorption Isotherm 

 χ1 [ fL /M3
G] CHI1 Langmuir distribution coefficient (2.36a) 

 χ2 [ fL /M3
s] CHI2 Langmuir coefficient (2.36a) 
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Production 

  [sw
1γ

-1] PRODF1 for solute transport: rate of first-order 
production of adsorbate mass in the fluid 
mass (equals zero for energy transport) 

  [ss
1γ

-1] PRODS1 for solute transport: rate of first order 
production of solute mass in the immobile 
phase (equals zero for energy transport) 

  [(E/M)/s] PRODFØ for energy transport: zero-order rate of 
energy production in the fluid 

  ….or w
oγ

  [(Ms/M)/s] PRODFØ for solute transport: zero-order rate of solute 
mass production in the fluid 

  [(E/MG)/s] PRODSØ for energy transport: zero-order rate of 
energy production in the immobile phase 

  ….or s
oγ

  [(Ms/MG)/s] PRODSØ for solute transport: zero-order rate of 
adsorbate mass production in the immobile 
phase 

 
Boundary conditions and source data 
 

Flow Data—Specified Pressures 

 NPBC   NPBC  number of nodes at which pressure is a 
specified constant or function of time 

 IPBCipu  IPBC(IPU)  node number at which pressure is specified 
(for all NPBC nodes) 

 PBCipu [M/(L s2)] PBC(IPU) value of specified pressure at node IPBC 
(for all NPBC nodes) 

  [°C] UBC(IPU) for energy transport: value of temperature of 
any fluid that enters the system at node 
IPBC 

 UBCipu  .or 

  [Ms/M] UBC(IPU) for solute transport: value of concentration 
of any fluid that enters the system at node 
IPBC 
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Flow Data—Specified Flows and Fluid Sources 

 NSOP  NSOP number of nodes at which a source of fluid 
mass is specified 

 IQCPiqp  IQCP, node number at which a fluid source is 
IQSOP (IQP) specified (for all NSOP nodes) 

 
iINQ  [M/s] QINC, QIN(I) fluid source rate at source node IQCP (for 

all nodes) 

  [°C] UINC, UIN(I)  for energy transport: value of temperature of 
any fluid that enters the system at source 
node IQCP 

    or 
iINU

  [Ms/M] UINC, UIN(I)  for solute transport: value of concentration 
of any fluid that enters the system at source 
node IQCP 

 
Energy or Solute Data— 

Specified Temperatures or Concentrations 

 NUBC  NUBC number of nodes at which temperature or 
concentration is a specified constant or 
function of time. 

 IUBCipu  IUBC(IPU) node number at which temperature or 
concentration is specified (for all NUBC 
nodes) 

  [°C] UBC(IPU) for energy transport: value of specified 
temperature at node IUBC (for all NUBC 
nodes) 

 UBC    or 

  [Ms/M] UBC(IPU) for solute transport: value of specified 
concentration at node IUBC (for all NUBC 
nodes) 

 
Energy or Solute Data— 

Diffusive Fluxes of Energy or Solute Mass at Boundaries 

 NSOU  NSOU number of nodes at which a diffusive energy 
or solute mass flux (source) is specified 

 IQCU  IQCU, node number at which a flux (source) is 
IQSOU(IQU) specified (for all NSOU nodes) 
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  [E/s] QUINC for energy transport: energy flux (source) 

rate at node IQCU (one value for each of 
NSOU nodes) 

  ..or 
iINΨ

  [Ms/s] QUINC for solute transport: solute mass flux 
(source) rate at node IQCU (one value for 
each of NSOU nodes) 

 
Initial conditions 

 to [s]  TSTART starting time for simulation clock 

   CPUNI = “UNIFORM” (uniform initial P) 
    = “NONUNIFORM” (nonuniform initial P) 

   CUUNI = “UNIFORM” (uniform initial U) 
    = “NONUNIFORM” (nonuniform initial U) 

 pi(t=to)  [M/(L s2)]  PVEC(II)  initial pressure at all nodes in mesh (for 
UNIFORM, a single value; for 
NONUNIFORM, a list of values) 

  [°C] UVEC(II) for energy transport: initial temperature at 
all NN nodes in the mesh  (for UNIFORM, a 
single value; for NONUNIFORM, a list of 
values) 

 Ui(t=to)    or 

  [Ms/M] UVEC(II) for solute transport: initial concentration at 
all NN nodes in the mesh (for UNIFORM, a 
single value; for NONUNIFORM, a list of 
values) 

 
Numerical and temporal control data 

  [Ls]  GNUP specified pressure boundary condition 
“conductance” factor (4.111) 

ipν

  [Ls]  GNUU specified concentration boundary condition 
“conductance” factor (4.143) 

iUν

 UP [1]  UP  fractional upstream weight for asymmetric 
weighting functions (4.23) and (4.24) in 2D, 
and (4.66) – (4.68) in 3D 

 ∆t [s]  DELT  initial time step 
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  [s]  TMAX  maximum allowed simulation time 

   ITMAX  maximum allowed number of time steps in a 
simulation 

   ITCYC  time step change cycle 

   DTMULT  multiplier for time step change cycle 

   DTMAX  maximum time step size allowed when using 
multiplier 

 NPCYC  NPCYC  time steps in pressure solution cycle 

 NUCYC  NUCYC  time steps in temperature or concentration 
solution cycle 

   ITRMAX  maximum number of iterations for 
nonlinearities per time step 

  [M/(L s2)]  RPMAX  pressure convergence criterion for iterations 

  [°C] RUMAX  for energy transport: temperature 
convergence criterion for resolving  

    or  nonlinearities 

  [Ms/M] RUMAX  for solute transport: concentration 
convergence criterion for resolving 
nonlinearities 

 

Matrix equation solver data 

    solver for p (flow equation): 
   CSOLVP = “DIRECT” (Gaussian elimination) 
    = “CG” 
    = “GMRES” 
    = “ORTHOMIN” 

    solver for U (transport equation): 
   CSOLVU = “DIRECT” (Gaussian elimination) 
    = “GMRES” 
    = “ORTHOMIN” 

   ITRMXP maximum number of solver iterations during 
p solution 

   ITRMXU maximum number of solver iterations during 
U solution 

180 



 
   TOLP convergence tolerance for solver iterations 

during P solution 

   TOLU convergence tolerance for solver iterations 
during U solution 

 
Data for options 

    = “COLD” (new simulation – cold start) 
   CREAD = “WARM” (restart simulation – warm 

start) 

   ISTORE ≥ 1   store simulation results for later restart 
= 0   do not store results 

 
Simulation mode options 

   SIMULA = “SUTRA ENERGY” (energy transport) 
= “SUTRA SOLUTE” (solute transport) 

   CUNSAT = “UNSATURATED” (sat/unsat flow) 
= “SATURATED” (saturated flow) 

   CSSFLO = “STEADY” (steady flow) 
= “TRANSIENT” (transient flow) 

   CSSTRA = “STEADY” (steady transport) 
= “TRANSIENT” (transient transport) 

 
Velocity Output Option 

    = “Y” (output fluid velocity at element  
   CVEL    centroids) 

= “N” (no velocity output) 
 

Observation Option 

   NOBCYC observations are made every NOBCYC time 
steps  

   INOB(I) list of observation node numbers 

   NOBS number of observation nodes 
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Budget Option 
    = “Y” (output fluid mass and energy or  
   CBUDG  solute mass budgets to “.lst” file) 

= “N” (no budgets) 
 

Output Controls 

    = “Y” (output nodewise input data to “.lst”  
   CNODAL  file)  

= “N” (cancel output) 

    = “Y” (output elementwise input data to  
   CELMNT  “.lst” file) 

= “N” (cancel output) 

   CINCID = “Y” (output incidence lists to “.lst” file) 
= “N” (cancel output) 

   NPRINT results are output to “.lst” file every 
NPRINT time steps 

   NCOLPR results are output to “.nod” file every 
NCOLPR time steps 

   LCOLPR results are output to “.ele” file every 
LCOLPR time steps 

   NCOL list of variables to be output in columns in 
the “.nod” file 

   LCOL list of variables to be output in columns in 
the “.ele” file 
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7.2 Discretization Rules of Thumb 
 

 

 

 

Proper discretization in space and time is the vital factor in obtaining accurate simulation of the 
physics of flow and transport with a numerical model such as SUTRA. Adequate discretization is 
vital for two reasons: 1) the ability of a model to represent the variations in system parameters 
and to simulate complex processes depends on the fineness of discretization, and, 2) the accuracy 
and stability of the numerical methods used to represent system processes, in particular, 
transport, depends on the spatial and temporal discretization. This section describes some general 
guidelines for designing adequate discretization for simulation with SUTRA. 

A “sufficiently good” discretization allows for accurate simulation of the processes and 
parameter variations at the scale of interest, and thus the goodness of a discretization is a relative 
rather than absolute factor. A better discretization is always obtained by making existing 
discretization finer, but the finer the discretizations are, the more computationally expensive the 
simulations become. 
 
Relative to a certain adequate level of fineness, even finer discretizations do not practically 
improve the accuracy of simulation. In contrast, discretization that is too coarse may completely 
obscure parameter variations and processes of interest in a simulation, and give highly inaccurate 
results. Unfortunately, simulation results based on inadequate discretization may appear to be a 
reasonably good representation of flow and transport physics in a particular system. The only 
way to explicitly check for inadequate discretization of a system is to simulate with a 
discretization that is assumed to be adequate and then with a significantly finer discretization and 
compare results. If there are no telling differences in the results, then the coarser simulation 
indeed has been adequately discretized. 
 
Some general guidelines for obtaining adequate discretization, both for parameter representation 
and for accuracy and stability of numerical methods are given below. 
 
1) Nodes are required where boundary conditions and sources are specified. Should accurate 
simulation of processes near these specified points be required, then a finer mesh is needed in 
these areas. 

2) A finer mesh is required where parameters vary faster in space. This is often the case near 
sources or boundary conditions specifying inflows of fluid, solute or energy. The fineness 
required is that which makes the nodewise, cellwise, or elementwise discretization of the 
parameter values a good representation of the actual distributions. When a parameter distribution 
is known a priori, then this discretization is straightforward. However, when the parameter 
distribution depends on the simulation results then judgment must be exercised in discretization, 
and the result may be tested by experiment with various discretizations. 

It is important to recognize that each node or element does not alone represent a physical entity 
in an aquifer system. This is demonstrated in the following example, which shows that one layer 
of elements is not a good representation in cross section of a semiconfining layer or aquifer unit. 
Although permeability is specified elementwise and the permeability of two aquifer units 
separated by confining layer, viewed in cross section, is clearly represented visually by three 
layers of elements, the numerical model does not “see” three distinct layers of permeability. Each 
node at the boundary of these layers experiences some average of the two permeabilities rather 
than either one. Thus, no node in the system experiences the assigned low permeability of 
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confining layer, and the three-layer discretization is inadequate. More layers of elements are 
required in each unit to obtain adequate discretization although the model always experiences an 
average permeability in the elements making up the boundaries of the units. Further refinement 
of discretization would be required to represent the pressure distribution should accurate 
simulation of sharply varying pressures across the confining layer be required. 
 
Discretization of the spatial distribution of transport variables, concentration or temperature, 
often is that which requires the finest mesh. The spatial distributions of these variables often 
include a “front” at which the concentration or temperature changes sharply from high values on 
one side to low values on the other side. A rule of thumb is that at least five elements should 
divide the front in order to guarantee that the simulated front width arises from simulated 
physical processes rather than from spreading due to inadequate discretization. When such fronts 
travel with the flow across a mesh during simulation, the mesh must be designed fine enough to 
adequately represent the front at all points along its path. In regions external to the front path, 
coarser discretization is usually adequate, and an expanding mesh may be used in this region. 
 
3) The spatial stability of the numerical approximation of the unified transport equation (2.52) 
depends on the value of a mesh Peclet number, Pem, given by: 
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where ∆LL is the local distance between element sides along a streamline of flow. Spatial 
instability appears as one or more oscillations in concentration or temperature. Stability is 
guaranteed in all cases when Pem  2, which gives a criterion for choosing a maximum 
allowable element dimension, ∆L

≤
L, along the local flow direction. This criterion significantly 

affects discretization. Spatial stability is usually obtained with SUTRA when 
 
    (7.2) 4Pe m ≤
 
which gives a less-stringent criterion. Mesh design according to the criterion is critical when 
concentrations or temperatures change significantly along streamlines, such as when a front is 
propagated in the direction of flow. When concentrations or temperatures exhibit small changes 
along streamlines, then the criterion (7.2) may safely be violated, even by a few orders of 
magnitude, without inducing spatial instability. An example of this may be cross sectional 
simulation of an aquifer containing freshwater and saltwater. In such a case, flow often is 
directed parallel to the front between freshwater and saltwater, allowing use of discretization 
with large mesh Peclet numbers. 
 
In the typical case of solute or energy transport with longitudinal dispersion primarily due to 
longitudinal mixing, the mesh Peclet number becomes: 
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A discretization rule of thumb for simulation with SUTRA that guarantees spatial stability in 
most cases is: 
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    (7.4) LL 4α∆L ≤
 
While (7.4) deals with adequate discretization for numerical stability, it may be interpreted from 
another point of view. Taken in combination with the considerations of guideline (2) requiring at 
least five elements across a front, (7.4) implies that a minimum front width which may be 
simulated when the mesh is designed according to ∆LL ~ 4αL is 20αL. Thus for early times 
following onset of localized energy or solute source, the sharp front that should result may be 
simulated inaccurately, as its width is less than 20αL. 
 
4) Discretization for transverse dispersion also may be related to dispersivity. Although an exact 
guideline is not given, the object of transverse discretization is to make the local element 
dimension perpendicular to a streamline small relative to the total transverse dispersivity: 
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  (7.5) 

where ∆LT is the local element dimension transverse to the flow direction. In the case where the 
transverse mixing rather than diffusion dominates the transverse dispersion, an adequate but 
stringent rule of thumb may be ∆LT < 10αT, although simulation results should be compared for 
various transverse discretizations. 

5) Radial/cylindrical meshes with a well require very fine discretization near the center axis to 
accommodate the sharply curving pressure distribution. The radial element dimensions may 
increase outward and become constant at, for example, a size of 4αL. 
 
6) Unsaturated flow simulation requires at least as fine discretization as does transport. Spatial 
instability appears as an oscillation in saturation values. Unsaturated flow parameters may vary 
sharply in space, especially during wetting events. A rule of thumb is to design the mesh to have 
at least five elements across a saturation front. 
 
7) Discretization in time is done by choosing the size of time steps. Actual time step sizes may 
be as large as possible while providing adequate discretization of parameter changes in time. As 
with spatial discretization, the adequacy of a temporal discretization may be tested only by 
comparing results of simulations carried out with different time step sizes. 
 
For saturated flow simulation, temporal discretization begins with fine time steps, which may 
become significantly larger as the system response slows. The time-step multiplier feature is 
provided in SUTRA input data to allow this type of temporal discretization. 
 
For unsaturated flow simulation with SUTRA, temporal discretization must be fine enough to 
keep saturation changes at each node to be small over any time step. A rule of thumb is that over 
a time step, the maximum saturation change is about 0.1. 
 
For transport simulation, temporal changes in concentration or temperature at a point in space are 
often due to the movement of fronts with the fluid flow. Therefore, adequate discretization of 
these parameters in time is often related to both fluid velocity and spatia1 gradients in the 
parameters. The higher the longitudinal spatial gradient and fluid velocity, the smaller the time 
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step required for adequate temporal discretization. A general guideline is that relatively sharp 
fronts require time discretization, which allows them to move only a fraction of an element per 
time step. Broad fronts with low gradient in concentration or temperature have adequate 
temporal discretization when time steps are chosen to move the front one or more elements per 
step. 
 
Usually a constant time step size is chosen for transport simulation when flow velocities remain 
relatively constant during a simulation. For saturated flow and transport, if adequate temporal 
pressure discretization would allow larger time steps than the temporal transport discretization, 
then a pressure solution may be done only every n time steps for transport. For example, if the 
adequate pressure time step is ten times that of transport, then SUTRA input data requires the 
specification: NPCYC = 10, NUCYC = 1. 
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7.3 Program Dimensions 
 
The main program computes the dimensions of the various arrays used in the SUTRA code. 
These arrays are dynamically allocated in the main program. The table below lists the total 
storage required by SUTRA Version 2D3D.1 for dynamically allocated real and integer arrays, 
depending on the dimensionality of the problem and the type of solver(s) used: 
 

 

 
sum of real array dimensions sum of integer array dimensions 

direct 
solver 

 
(2*NBI + 29)*NN + 19*NE 

+ 3*NBCN + 19 + 2*NBCN + NOBS + 3 
 

 
3*NN + 9*NE + NSOP + NSOU 

 
2D 

iterative 
solver(s) + 3*NBCN + NWF + 17 

 
2*NELT + 30*NN + 19*NE 

 

 
2*NELT + NN + 9*NE + NSOP 
+ NSOU + 2*NBCN + NOBS 

+ NBI + NWI + 1 
 

direct 
solver 

 
(2*NBI + 29)*NN + 48*NE 

+ 3*NBCN + 2 
 

 
3*NN + 9*NE + NSOP + NSOU 

+ 2*NBCN + NOBS + 3 
 

3D 

iterative 
solver(s) 

 
2*NELT + 30*NN + 48*NE 

+ 3*NBCN + NWF 
 

 
2*NELT + NN + 9*NE + NSOP 
+ NSOU + 2*NBCN + NOBS 

+ NBI + NWI + 1 
 

 
The quantities in the table above are defined as follows: 
 
 NN = number of nodes 
 NE = number of elements 
 NBI = full bandwidth of matrix (NBI is equal to one plus twice the maximum 

difference in node numbers in the element containing the largest node 
number difference in the mesh. See Figure 7.1)  

 NSOP = number of fluid source nodes 
 NSOU = number of solute or energy source nodes 
 NPBC = number of specified pressure nodes 
 NUBC = number of specified U nodes 
 NBCN = NPBC + NUBC + 1 
 NOBS = number of observation nodes 
 NN1 = number of nodes in the first node numbering direction 
 NN2 = number of nodes in the second node numbering direction 

  = length of matrix storage arrays for iterative solvers 
NELT   = 9*NN - 6*NN1 - 2 in 2D 
  = 27*NN - 6*NN1*(3*NN2 + 1) - 2 in 3D 
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  = length of floating-point workspace array for iterative solvers 
  = NL + 5*NN + 1 for CG solver 

NWF  = NELT + 16*NN + 132 for GMRES solver 
 = NELT + 39*NN + 11 for ORTHOMIN solver 
 (if two different iterative solvers are used, the larger value applies) 
  = length of integer workspace array for iterative solvers 
  = 2*NL + 11 for CG solver 
NWI  = 2*NELT + 31 for GMRES solver 
  = 2*NELT + 11 for ORTHOMIN solver 
  (if two different iterative solvers are used, the larger value applies) 
NL = (NELT + NN)/2 (defined for CG solver only) 

 
Please see the main program listing in the SUTRA source code for the memory requirements of 
the most recent version of SUTRA. The memory requirements are calculated by SUTRA and 
reported in the “.lst” output file. Note that the expressions given in the table above include only 
the memory used by dynamically allocated arrays, though these account for the vast majority of 
the memory usage. SUTRA uses a small amount of additional memory for the storage of various 
program variables. 

 
 
Figure 7.1. Minimization of bandwidth by careful numbering of nodes. In this 2D example, the same 
mesh has been numbered two different ways. In the first numbering scheme, the largest difference 
between node numbers in a single element is 15, giving a bandwidth of 1+2(15)=31. In the second 
numbering scheme, the largest difference between node numbers in a single element is 5, giving a 
bandwidth of 1+2(5)=11. The same principle applies to 3D meshes; the bandwidth equals one plus 
the maximum difference between nodes numbers in the element that contains the largest node 
number difference in the mesh. 
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7.4 Input and Output Files 
 
SUTRA reads information from three input files and writes information to as many as six output 
files. One of the input files, permanently assigned the name “SUTRA.FIL”, contains the file 
name and Fortran unit number assignments for the remaining input and output files. (See Section 
7.7 for details regarding the input format for the “SUTRA.FIL” file.) The other two input files 
and one of the output files must always be assigned by the user. For the remaining five output 
files, assignment is either entirely optional or required only if certain simulation and output 
options are desired. In the list below, “filename” is a user-specified prefix for the input and 
output files to be used in a specific simulation. The boldface suffixes (such as .inp) are the 
required file type extensions for the input and output files. 
 
INPUT FILES: 
 

 UNIT-K2 

 

SUTRA.FIL 
 UNIT-K0 

The UNIT-K0 file, “SUTRA.FIL”, is a permanently assigned file that contains 
user determined file names and unit number assignments for units K1 – K7 in 
each simulation. SUTRA sets K0 = 99. 

filename.inp 
 UNIT-K1 

A file must be assigned as fortran-unit-K1. This “.inp” file contains all of the 
input data necessary for simulation except initial conditions. 

filename.ics 

A file must be assigned as fortran-unit-K2. This “.ics” file contains initial 
conditions of pressure and concentration or temperature for the simulation to be 
done. 

OUTPUT FILES: 
 
SUTRA.SMY or filename.smy 
 UNIT-K00 

filename.rst 

A file can be assigned as fortran-unit-K00. (If not assigned by the user, it defaults 
to file name “SUTRA.SMY” and Fortran unit number 1.) This “.smy” file 
summarizes simulation progress, captures errors and convergence information. 

filename.lst 
 UNIT-K3 

A file must be assigned as fortran-unit-K3, in which the primary output of the 
simulation will be placed. This is the “.lst” file. 

 UNIT-K4 
An optional output file must be assigned as fortran-unit-K4 if the option to save 
the solution of the most recently completed time step for later restart is chosen in 
UNIT-K1 (when ISTORE ≥  1). Data will be placed in this “.rst” file in a format 
equivalent to UNIT-K2 data so that this file may later be used as UNIT-K2 (“.ics”) 
initial conditions. 
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filename.nod 
 UNIT-K5 

An optional output file must be assigned as fortran-unit-K5 to save nodewise 
simulation results in a columnwise format at a time step interval specified by the 
user. This is the “.nod” file. 

filename.ele 

 UNIT-K7 

 

 UNIT-K6 
An optional output file must be assigned as fortran-unit-K6 to save elementwise 
simulation results in a columnwise format at a time step interval specified by the 
user. This is the “.ele” file. 

filename.obs 

An optional output file must be assigned as fortran-unit-K7 to save simulation 
results at observation nodes. This is the “.obs” file. 

 
The data lists and formats for the input files are given in Appendix B, “SUTRA Input Data List.”  
 
 
7.5 User-Supplied Programming 
 
When SUTRA is used for simulation of systems with unsaturated flow, the user must code the 
desired unsaturated flow functions in subroutine UNSAT. When the SUTRA simulation includes 
time-dependent boundary conditions or sources, the desired temporal variations must be coded 
by the user in subroutine BCTIME.  

Subroutine UNSAT 
 
The general operation of this subroutine is described in section 5.7, “Program Structure.” Given 
a single value of pressure, UNSAT must provide values of Sw, ( ∂ Sw/ ∂ p), and kr. UNSAT 
consists of three sections. The user must supply code in each of these sections. An example using 
the unsaturated flow functions (2.8), (2.11), and (2.21a) and (2.21b) is given in subroutine 
UNSAT itself. 
 

 

The first section requires specification of saturation, Sw, as a function of pressure, p. The second 
section requires specification of the derivative of saturation with respect to pressure, p, or 
saturation, Sw. The third section requires specification of the relative permeability, kr, as a 
function of saturation, Sw, or pressure, p. The pressure value that is passed to UNSAT is the 
projected value, the most recent iterate, or the newly obtained solution. The values are either at 
Gauss points or at nodes. 

Any convenient programming algorithm may be used to implement these functions in UNSAT. 
Some possibilities are use of explicit expressions, as in the example; use of data statements; use 
of logical statements to give piecewise continuous functions; or use of READ statements to input 
new data to the functions from either the “.inp” input file or a new data file. In some cases 
involving entry pressure or residual saturation, logical statements may be used to apply different 
functions for different ranges of Sw or p. 
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Subroutine BCTIME 
 
The general operation of this subroutine is described in section 5.6, “Program Structure and 
Program Unit Descriptions.” At the beginning of each time step, BCTIME must provide all 
specified time-varying pressure values and temperature or concentration values of fluid inflow at 
these nodes; values of specified time-varying temperature or concentration; values of specified 
time-varying fluid sources (or sinks) and temperatures or concentrations of these flows if they 
are inflows; and values of time-varying energy or solute mass sources (or sinks). BCTIME 
consists of four sections, each dealing with one of the above types of specification. The user 
must supply code in the section (or sections) of BCTIME that specifies the particular type of 
time-varying boundary condition or source desired. 
 

 

 

 

The first section is used for specifying either time variation of pressure, or time variation of the 
temperature or concentration of any fluid that enters the system at a point of specified pressure, 
or both. The coding must be entered within a loop that checks all NPBC specified pressure nodes 
for the time-variability flag. This flag is a negative node number in the list of specified pressure 
nodes IPBC(IP). The counter for the list is IP. When the loop finds that the IPth node number, 
IPBC(IP), is negative, then the actual node number is given by I = -IPBC(IP). In this case, the 
user must supply code that specifies a value appropriate for the current time step, for both 
PBC(IP), which is the specified pressure for the IPth specified pressure node (node I), and for 
UBC(IP), which is the specified temperature or concentration of any inflow at the IPth specified 
pressure node (node I). The loop skips over node numbers in the list IPBC(IP) that are positive. 

The second section is used for specifying time variation of temperature or concentration. The 
coding must be entered within a loop that checks all NUBC specified temperature or 
concentration (U) nodes for the time-variability flag. This flag is a negative node number in the 
list of specified U nodes, IUBC(IU). The list begins in the (NPBC + l)th element of IUBC as 
shown in the description of subroutine BOUND in section 5.6, “Program Structure and Program 
Unit Descriptions.” The first NPBC elements of IUBC are blank. The counter for the list is IU. If 
the loop finds that the IUth node number, IUBC(NPBC + IU), is negative, then the actual node 
number is given by I = -IUBC(NPBC + IU). In this case, the user must supply code that specifies 
a value, appropriate for the current time step, for UBC(NPBC + IU), which is the specified 
temperature or concentration for the IUth specified U node (node I). The loop skips over node 
numbers in the list IUBC(NPBC + IU) that are positive. 

The third section is used for specifying time variation of either fluid sources (or sinks), 
temperature or concentration of inflowing fluid at sources, or both. The coding must be entered 
within a loop that checks all NSOP fluid source nodes for the time-variability flag. This flag is a 
negative node number in the list of fluid source nodes, IQSOP(IQP). The counter for the list is 
IQP. If the loop finds that the IQPth node number IQSOP(IQP), is negative, then the actual node 
number is given by I = - IQSOP(IQP). In this case, the user must supply code that specifies a 
value appropriate for the current time step, for both QIN(I), which is the specified fluid source 
for node I (the IQPth specified fluid source node), and for UIN(I), which is the temperature or 
concentration of inflowing fluid at node I. The loop skips over node numbers in the list 
IQSOP(IQP) that are positive. 

The fourth section is used for specifying time variation of energy or solute mass sources. The 
coding must be entered within a loop that checks all NSOU specified energy or solute mass 
source nodes for the time-variability flag. This flag is a negative node number in the list of 
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specified energy or solute mass source nodes, IQSOU(IQU). The counter for the list is IQU. If 
the loop finds that the IQUth node number, IQSOU(IQU), is negative, then the actual node 
number is given by I = -IQSOU(IQU). In this case, the user must supply code that specifies a 
value appropriate for the current time step, for QUIN(I), which is the specified energy or solute 
mass source for node I (the IQUth specified energy or solute mass source node). The loop skips 
over node numbers in the list IQSOU(IQU) that are positive. 
 
The current time at the end of the present time step in seconds, TSEC, and in other time units is 
available for use in specifying time variations. Any convenient programming algorithm may be 
used to implement the time-variations in BCTIME. Some possibilities are use of expressions as 
explicit functions of time such as, for example, a sine function to represent tidal pressure 
variations; use of data statements and new arrays explicitly dimensioned in BCTIME; use of 
logical statements to give stepped or piecewise continuous functions; or use of READ statements 
to input the time-varying values directly from the “.inp” input file or a new data file. If different 
functions or values are to be specified at various nodes, then the user must also supply code to 
distinguish which functions apply to which specified node numbers. 
 
 

 
7.6 Modes and Options 

Simulation modes 
 
SUTRA may simulate flow and transport in three temporal modes for either energy or solute 
transport: (1) transient flow and transport, (2) steady flow with transient transport, and (3) steady 
flow and steady transport. Mode (1) is the most computationally expensive, and mode (3) is the 
least expensive. Modes (2) and (3) are not applicable to all problems. The classes of problems 
amenable to solution by each mode are given below. 
 
 (1) Transient Flow and Transient Transport  

 

 
Allows for simulation of any physical problem that SUTRA deals with: either saturated 
or unsaturated flow or both; variable fluid density and viscosity; any sorption isotherm; 
energy or solute transport. 

 
 (2) Steady-State Flow and Transient Transport  
 

Allows for simulation of a restricted class of SUTRA problems: saturated flow only; 
constant fluid density and viscosity; any sorption isotherm; energy transport with only 
small variations in temperature, or solute transport. 

 
 (3) Steady-State Flow and Steady-State Transport  
 

Allows for simulation of the most restricted class of SUTRA problems: saturated flow 
only; constant fluid density and viscosity; linear sorption isotherm only; energy transport 
with only small variations in temperature, or solute transport. 

 
These modes are specified in the “.inp” input data file by the values of CSSFLO, CSSTRA, and 
SIMULA. 
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“.lst” file output options 
 
To help the user interpret SUTRA simulation results, two options are available for output to the 
“.lst” file. These are (1) velocity output and (2) budget output.  

An output of fluid velocity is available that may be used to plot velocity vectors with 
computer graphics software supplied by the user, or using SutraPlot (in 2D or 3D; Souza 
(1999)), SutraGUI (in 2D; Winston and Voss (2003)), or ModelViewer (in 2D or 3D; 
Hsieh and Winston, 2002). These velocities are calculated and output on each time step 
that a pressure solution is output. One velocity is calculated in each finite element, at the 
location of the element centroid, as described in section 5.4, “Velocity Calculation for 
Output.” Velocity output occurs in groups of values: first, the magnitude of the velocity 
vector at each element centroid; then, each of the angles that describe the orientation of 
the velocity vector. In 2D, only one angle is reported; the angle measured 
counterclockwise from the +x-axis to the velocity vector. In 3D, an additional angle is 
reported; the angle measured vertically from the x,y-plane to the velocity vector. Velocity 
values are lagged one time step if a noniterative solution is used. (In this case, they are 
calculated not with the new pressure solution, but with the solution of the previous time 
step and with fluid density values of the step before that. This keeps the velocity 
calculations consistent in time.) This option is controlled by the “.inp” input file 
parameter CVEL. The user can choose to report the x-, y-, and z-components of 
velocities at element centroids in the optional “.ele” file. 

 
 (1) Velocity Output  
 

 
 (2) Budget Output  
 

A fluid mass and energy or solute mass budget output is available as an aid in tracking 
the simulated behavior of a system. When the direct solver is used, the budget is not a 
rigorous check on numerical accuracy of the model, as the calculations involved in 
determining the budget are less accurate than the calculations used to carry out the 
SUTRA simulation. However, when the iterative solvers are used, the budget imbalances 
may be used to judge convergence of the iterative matrix equation solution. The budget is 
output on each time step with printed output to the “.lst” file, and tallies total system 
changes in fluid mass, and energy or solute mass for the time step. In addition to these 
totals of these quantities for the entire simulated region, the budget lists time step total 
gains and losses in these quantities at each specified pressure node, fluid source node, and 
energy or solute mass source node in the mesh. More information about the budget 
calculations is given in section 5.5, “Budget Calculations.” This option is controlled by 
the “.inp” input file parameter CBUDG. 
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Appendix A: List of Symbols 
 
 
Generic Units 
 
 [1] dimensionless 
 
 [E] energy units, or [M•L2/s2] 
 
 [L] length units 
 
 ]  fluid volume L[ 3

f

 
 ]  solid grain volume L[ 3

G

 
 
 

 

 

[M] fluid mass units 

 [MG] solid grain mass units 

 [Ms] solute mass units 
 

Units 
 
 [°C] degrees Celsius 
 
 [cm] centimeters 
 
 [d] days 
 
 [h] hours 
 
 

 [kg] kilograms 

 [m] meters 

 

[J] Joules or [kg•m2/s2] 
 

 
 [lbm] pounds mass 
 

 
 [min] minutes 
 
 [mo] months 
 
 [s] seconds 
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Special Notation 
 

 
dt

dor
t

Ψ
∂
Ψ∂   time derivative of Ψ 

 
 v =  i vx + j vy + k vz  vector v with components in i, j, and k 

directions 

 
z

k
y

j
x

i
∂
Ψ∂

+
∂
Ψ∂

+
∂
Ψ∂

=ψ∇  gradient of scalar Ψ 

 
z

v
y

v
x

v
v zyx

∂
∂

+
∂

∂
+

∂
∂

=∇ •  divergence of vector v 

 
 NN,....,4,3,2,1NN,1i ==  index i takes on all integer values 

between one and NN 
 
 |Ψ|  absolute value of scalar Ψ 
 
 |v|  magnitude of vector v 
 
 〈〈Ψ〉〉  approximate or discretized value of Ψ 
 
 ∆Ψ  discrete change in value of Ψ 
   (e.g.: ∆Ψ = Ψ2 - Ψ1) 
 

 

 

 

 

 

 

 Ψo  initial condition or zeroth value of Ψ 

 ΨBC  value of Ψ as specified at a boundary 
condition node 

 Ψi or Ψj  value of Ψ at node or cell i or j 

 ΨIN  value of Ψ in inflow 

 ΨKG  value of Ψ at the KGth Gauss point 

 ΨL  value of Ψ in element L 

 vs  component of a vector v along a 
stream line 

 
 vx  component of a vector v in the x 

direction 
 
 vy  component of a vector v in the y 

direction 
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 vz  component of a vector v in the z 

direction 
 
 vξ  component of a vector v in the ξ 

direction 
 
 vη  component of a vector v in the η 

direction 
 
 vζ  component of a vector v in the ζ 

direction 
 

 

 

 

 

 

 ΨL  value of Ψ in element L 

 Ψn  value of Ψ at time step n 

 Ψn+1  value of Ψ at time step n+l 

 Ψ(n+1)*  value of Ψ evaluated at previous time 
step on first iteration, and at most 
recent iteration on subsequent 
iterations 

 Ψproj  value of Ψ projected from previous 
time steps on first iteration 

 〈〈v〉〉*  consistently evaluated velocity 
 
 〈〈ρg〉〉*  consistently evaluated density-gravity 

term 
 

  summation NN321

NN

1i

ψ++ψ+ψ+ψ=ψ∑
=

L

 
 
Greek Lowercase 
 

 

 

 

 α (2.17) [M/(L•s2)]-1 Porous matrix compressibility 

 αL(x,y[,z],t) (2.40a) [L] Longitudinal dispersivity 
  (2.42a) 

 αLmax(x,y[,z]) (2.43a,b)  [L] Longitudinal dispersivity in the  
  (2.45a,b)  maximum permeability direction 
     

 αLmid(x,y,z) (2.45a,b) [L] Longitudinal dispersivity in the 
middle permeability direction in 3D 
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 α ]) (2.43a,b) [L] Longitudinal dispersivity in the 

 

 

 

 

 

 

 

 

 

 

 

 

 ε(x,y[,z],t) defined [1] Porosity 

Lmin(x,y[,z
  (2.45a,b)  minimum permeability direction 
     
 αT(x,y,t) (2.40b) [L] Transverse dispersivity in 2D 
  (2.42b) 

 αT1(x,y[,z],t) (2.42b) [L] First transverse dispersivity in 3D 

 αT2(x,y[,z],t) (2.42c) [L] Second transverse dispersivity in 3D 

 αTmax(x,y[,z]) (2.44a,b) [L] Transverse dispersivity in the 
  (2.46a,b)   maximum permeability direction 

 αTmid(x,y,z) (2.46a,b) [L] Transverse dispersivity in the middle 
permeability direction in 3D 

 αTmin(x,y[,z]) (2.44a,b) [L] Transverse dispersivity in the 
  (2.46a,b)  minimum permeability direction  

 β (2.15) [M/(L•s2)]-1 Fluid compressibility 

 )  (2.25) [E/Mt],z[,y,x(s
oγ G•s] Energy source in solid grains 

  (2.37b) [(Ms
oγ s/M)/s] Zero-order adsorbate mass 

production rate 
 
 )  (2.25) [E/M•s] Energy source in fluid t],z[,y,x(w

oγ

  (2.37a) [(Mw
oγ s/M)/s] Zero-order solute mass production 

rate 

  (2.37b) [ss
1γ -1] First-order mass production rate of 

adsorbate 

  (2.37a) [sw
1γ -1] First order mass production rate of 

solute 

 δij (4.112a) [1] Kronecker delta 
 

  after (2.6) 
 
 ζ (4.29) [L]  ζ local coordinate 
 
 η (4.3),(4.27) [L] η local coordinate 
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 θ(x,y) defined [°] Angle from +x-coordinate axis to 
  after (2.20b)  direction of maximum permeability 

in 2D     
 
 θ [°] Angle from +x-coordinate axis to 
  after (2.20b)  direction of maximum permeability,  

 

 

 

 

 
 θ [°] Angle upward from the (max,mid)-

plane to local flow direction in 3D 
 

 

 

 

 

1(x,y,z) defined 

    measured within the x,y-plane in 3D 

 θ2(x,y,z) defined [°] Angle from x,y-plane to direction of 
  after (2.20b)  maximum permeability, measured 

upward from the x,y-plane in 3D 

 θ3(x,y,z) defined [°] Angle from x,y-plane to direction of 
  after (2.20b)  middle permeability measured within 

the plane perpendicular to the 
maximum permeability direction in 
3D 

 θkv(x,y,t) (2.43a,b) [°] Angle from maximum permeability 
  (2.44a,b)  direction to local flow direction in 

2D 

 θkv1(x,y,z,t) (2.45a,b) [°] Angle from maximum permeability 
direction to local flow direction, 
measured within (max,mid)-plane in 
3D 

kv2(x,y,z,t) (2.45a,b) 

 κ1(C,Cs) (2.32b) [M/MG] First general sorption coefficient 

 κ2(C,Cs) (2.32b) [M/MG•s] Second general sorption coefficient 

 κ3(C,Cs) (2.32b) [Ms/MG•s] Third general sorption coefficient 
 
 λ(x,y[,z],t) (2.25) [E/(s•L•°C)] Bulk thermal conductivity of solid 

matrix plus fluid 

 λs (2.26) [E/(s•L•°C)] Solid thermal conductivity (about λs 

~ 3.5 [J/(s•m•°C)] at 20°C) 

 λw (2.26) [E/(s•L•°C)] Fluid thermal conductivity (about λw 

~ 0.6 [J/(s•m•°C)] at 20°C) 
 
 µ (2.5), (2.6) [M/(L•s)] Fluid viscosity 
 

203 



 
  (4.93) [L•s] Conductance for specified pressure 

in cell i 
ipν

 

 

 

 

 

  (4.83) [s/Lpν 2] Conductance for specified pressure 
nodes 

 
  (4.143) [E/(s•°C)] Conductance for specified 

temperature or 
iUν

   or [s-1] concentration in cell i 
 
 ξ (4.1),(4.25)  [L] ξ local coordinate 

 ρo (2.3),(2.4) ]L/[ f  Base fluid density at C=CM 3
o or T=To 

 
 ρ(x,y[,z],t) (2.1)  Fluid density ]L/M[ 3

f

 ρs defined /[  Density of solid grains in solid ]LM 3
GG

  after (2.24),  matrix 
  (2.30) 

 ρw defined /[  Density of pure water ]LM 3
f

  after (2.2) 

 σ′
 

 

 

 

 

 

 

 

 (2.17) [M/(L•s2)] Intergranular stress 

 σs (2.47) [L2/s] Diffusivity in solid phase in unified 
transport equation 

 σw (2.47)  [L2/s] Diffusivity in fluid phase in unified 
transport equation 

 φj (3.4) [1] Symmetric bilinear basis function in 
global coordinates at node j 

 χ1 (2.34a,b) M/[ f  Linear distribution coefficient ]L G
3

 χ1 (2.35a,b) M/[ f  A Freundlich distribution coefficient ]L G
3

 χ1 (2.36a,b) M/[ f  A Langmuir distribution coefficient ]L G
3

 χ2 (2.35a,b) [1] Freundlich coefficient 

 χ2 (2.36a,b) M/[ f  Langmuir coefficient ]L s
3
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  (4.143) [E/s] or Source of energy or solute mass at  

iBCψ
   [Ms/M•s] specified temperature or 

concentration node 
  (4.144) [E/s] or Source of energy or solute mass at INψ

i

  and defined [Ms/M•s] node i 
  after (4.122)  

 
 

    
  defined [E/s] or Sink of energy or solute mass at  OUTψ

i

  after (4.122) [Ms/M•s] node i 
  (4.88) [1] Asymmetric weighting function in 

global coordinates at node i 
ωi

Greek Uppercase 
 

 

 

 

 Γ (3.17) [L2] External boundary (area) of 
simulated region 

 Γs(x,y[,z],t) (2.30) [Ms/MG•s] Adsorbate mass source (per unit 
solid matrix mass) due to production 
reactions within adsorbed material 
itself 

 Γw(x,y[,z],t) (2.29) [Ms/M•s] Solute mass source in fluid (per unit 
fluid mass) due to production 
reactions 

 ∆LL

 

 

 
 ∆ (3.29) [s] Time step n+1 
 

 

 

 (7.4) [L] Distance between sides of element L 
along streamline 

 ∆LT (7.5) [L] Distance between sides of element L 
perpendicular to streamline 

 ∆tn (3.33) [s] Time step n 

tn+1 

 H+ (4.4),(4.28) [1] One-dimensional basis function in η 
direction 

 H- (4.3),(4.27) [1] One-dimensional basis function in η 
direction 

 H* (4.18),(4.56) [1] Asymmetric portion of η weighting 
function 

 θi (4.13)-(4.16) [1] Asymmetric weighting 
  (4.47)-(4.54)   function at node i 
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 Ψ (4.29) [1] One-dimensional basis function in ζ 

direction 
 

 

 

 Ξ+ (4.2),(4.26) [1] One-dimensional basis function in ξ 
direction 

 Ξ- (4.1),(4.25) [1] One-dimensional basis function in ξ 
direction 

 Ξ* (4.17),(4.55) [1] Asymmetric portion of ξ weighting 
function 

 ϒ(x,y[,z],t) (2.22) [Ms/(L3
•s)] Solute mass source (e.g., dissolution 

of solid matrix or desorption) 

 Ψ+ (4.30) [1] One-dimensional basis function in ζ 
direction 

- 

 Ψ* (4.57) [1] Asymmetric portion of ζ weighting 
function 

 Ωi (4.5)-(4.8) [1] Bilinear symmetric basis function at 
  (4.31)-(4.38)  node i 
 

Roman Lowercase 
 

 

 

 

 

  (2.41a-c)  2D 

 aξ, aη, aζ (4.23),(4.24) [1] Asymmetric weighting function 
coefficients 

  (4.66)-(4.68) 
 
 c(x,y[,z],t) (2.1)  Solute volumetric concentration 

(mass solute per volume total fluid) 
]L/M[ 3

fs

 cs (2.27b) [E/(MG•°C)] Solid grain specific heat (about cs ~ 
8.4 x 102 [J/kg•°C] for sandstone at 
20°C) 

 cw (2.25) [E/(M•°C)] Specific heat of water (about cw ~ 
4.182 x 103 [J/kg•°C] at 20°C) 

 dL(x,y[,z],t) (2.39a-g) [L2/s] Longitudinal dispersion coefficient 
  (2.41a-g) 

 dT(x,y,t) (2.39a-g) [L2/s] Transverse dispersion coefficient in 
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 dT1(x,y,z,t) (2.41d-g) [L2/s] First transverse dispersion 
coefficient in 3D 

 dT2(x,y,z,t) (2.41d-g) [L2/s] Second transverse dispersion 
coefficient in 3D 

 
 

 

 

 

det J (4.73b),(4.74) [1] Determinant of Jacobian matrix 

 es defined [E/MG] Energy per unit mass solid matrix 
  after (2.24) 

 ew defined [E/M] Energy per unit mass water 
  after (2.24) 

 f(x,y[,z],t) (2.30) [Ms/(L3
•s)] Volumetric adsorbate source (gain of 

adsorbed species by transfer from 
fluid per unit from fluid per unit total 
volume) 

 fs(x,y[,z],t) (2.32a) [Ms/MG•s] Specific solute mass adsorption rate 
(per unit mass solid matrix) 

 g (2.19a,b) [L/s2] Gravitational acceleration (gravity 
vector) 

 
 h(x,y[,z],t) (2.20) [L] Hydraulic head (sum of pressure 

 
  (3.1)   head and elevation head) 

 k(x,y[,z]) (2.19a) [L2] Solid matrix permeability 
 

 

 

 

 

 

 

  after (2.7) 

 kmax(x,y[,z]) defined [L2] Maximum value of permeability 
  after (2.20b) 

 kmid(x,y,z) defined [L2] Middle value of permeability in 3D 
  after (2.20b) 

 kmin(x,y[,z]) defined [L2] Minimum value of permeability 
  after (2.20b) 

 kr(x,y[,z],t) (2.19a) [1] Relative permeability to fluid flow 
(assumed to be independent of 
direction). 

 p(x,y[,z],t) defined [M/(L•s2)] Fluid pressure 
  before (2.1) 

 pc(x,y[,z],t) (2.7) [M/(L•s2)] Capillary pressure 

 pcent defined [M/(L•s2)] Entry capillary pressure 
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  (4.83) [M/(L•spBCi

2)] Specified pressure value at node i 
 
 defined [M/s] Fluid mass flux in across boundary at 

 

 

 

 

 

qINi
 

  after (4.89)  node i 
   
  (4.89) [M/s] Fluid mass flux out across boundary 

at node i 
qOUTi

 r* (6.3a) [L] Parameter in analytical solution for 
radial transport 

 s* (6.1a) [L] Drawdown for pump test example 

 sL (4.131) [1] Left side coefficient contribution of 
sorption isotherm to U equation 

 sR (4.131) [Ms/M] Right side contribution of sorption 
isotherm to U equation 

 
 t (3.4) [s] Time 

 v(x,y[,z],t) (2.39) [L/s] Magnitude of velocity v 
 
 v(x,y[,z],t) (2.19a) [L/s] Average fluid velocity 
 
 vs (2.49) [L/s] Net solid matrix velocity 
 
 vx(x,y[,z],t) (2.39) [L/s] Magnitude of x-component of v 
 
 vy(x,y[,z],t) (2.39) [L/s] Magnitude of y-component of v 
 
 vz(x,y,z,t) (2.39) [L/s] Magnitude of z-component of v in 

3D 
 
 x  [L] x coordinate 
 
 x defined [L] Coordinate along direction of  

 
 x defined [L] Coordinate along direction of  

 

max 
  after (2.20b)  maximum permeability 

mid 
  after (2.20b)  middle permeability direction in 3D 

 xmin defined [L] Coordinate along direction of  
  after (2.20b)  minimum permeability direction in 

3D 
 
 y  [L] y coordinate 
 
  z  [L] z coordinate in 3D
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Roman Uppercase 
 

 

 

 B(x,y,t) (3.2) [L] Aquifer thickness in 2D mesh 

 A (6.3b) [L2/s] Factor in analytical solution for 
radial transport 

 AFi (4.97) [L•s2] Matrix coefficient of pressure time 
derivative 

 ATi (4.133) [E/°C] or [1] Matrix coefficient of U time 
derivative 

 

 
 

 

 

 

 

    (mass solute per mass total fluid) 
 

 

 
 CF [M/°C] Matrix coefficient of U time 

 
 D

BASE(x,y) (3.2) [L] Elevation of aquifer base for 
example problem 

 BFij (4.99) [L•s] Matrix coefficient in pressure 
equation 

  (4.101) 

 BTij (4.135) [E/(s•°C)] Matrix coefficient in U equation 
  (4.139) or [s-1] 

 Co (2.4) [Ms/M] Base solute concentration in fluid  

 C(x,y[,z],t) (2.1) [Ms/M] Solute mass fraction (or solute 
concentration) in fluid  

 Cs(x,y[,z],t) (2.30) [Ms/MG] Specific concentration of adsorbate 
on solid grains (mass 
adsorbate/(mass solid grains plus 
adsorbate)) 

 C*(x,y[,z],t) (2.29) [Ms/M] Solute concentration of fluid sources 
(mass fraction)) 

i (4.98) 
   or [M]  derivative in pressure equation 
    

(x,y[,z],t) (2.25),(2.29) [L tensor 
 

 

2/s] Dispersion 

 Dm (2.29) [L2/s] Apparent molecular diffusivity of 
solute in solution in a porous 
medium including tortuosity effects, 
(Dm~1. x10-9 [m2/s] for NaCl  

    at 20.°C) 
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 D [L Element of dispersion tensor 

 

 

 

 

 

 

 

 
 

ij (2.39c) 2/s] 
  (2.41c) 

 Dxx, Dxy, Dxz, (2.38a,b) [L2/s] Elements of dispersion tensor in 
 Dyx, Dyy, Dyz,   (x,y,z) coordinates 
 Dzx, Dzy, Dzz 

 DFi (4.100) [M/s] Element of vector on right side of  
  (4.102)  pressure equation 

 DTij (4.134) [E/(s•°C)] Matrix coefficient of U equation 
  (4.138) or [s-1] 

 ETi (4.137) [E/s] Element of vector on right side of U 
   or [Ms/M•s] equation 

 GKG (4.77) [1] Coefficient of Gauss integration 

 GsTL (4.136b) [E/(s•°C)] Element of vector on left side of U 
equation 

   or [s-1] 

 GsTR (4.136c) [E/s] Element of vector on right side of U 
   or [Ms/M•s] equation 

 GTi (4.136a) [E/(s•°C)] Element of vector on left side of U
   or [s-1]  equation 
    
 
 I (2.25),(2.29) [1] Identity tensor (ones on diagonal, 

zeroes elsewhere) 
 
 Iij (3.23) [L2/s] Matrix arising from integral in 

example problem 
 
 K(x,y[,z]) (2.20),(3.1) [L/s] Hydraulic conductivity 
 
 KG (4.77)  Gauss point number  
 
 NE (3.3)  Number of elements in mesh 
 
 NELT §7.3  Length of matrix storage arrays for 

iterative solvers 
 
 NN (3.4)  Number of nodes in mesh 
 
 NP (4.77)  Number of Gauss points 
 
 NPBC §7.1  Number of specified pressure nodes 

in mesh 
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 NSOP §7.1  Number of specified fluid source 

nodes in mesh 
 
 NSOU §7.1  Number of specified U source nodes 

in mesh 
 
 NUBC §7.1  Number of specified U nodes in 

mesh 
 
 NPCYC §7.1  Pressure solution cycle 
 
 NUCYC §7.1  U solution cycle 
 
 NWF §7.3  Length of floating-point workspace 

array for iterative solver 
 
 

 

 

 

 

 

 

 

 
 Q [s Volumetric fluid source for example 

problem (volume fluid injected per 
time / volume aquifer) 

 

 

NWI §7.3  Length of integer workspace array 
for iterative solver 

 O (3.7) [s-1] Fluid mass balance expression for 
the example problem 

 Op (4.83) [M/(L3
•s)] Fluid mass balance expression 

 Ou (4.113) [E/(L3
•s)] Energy or solute mass balance 

expression 
   [Ms/(L3

•s)] 

 Pem (7.1) [1] Mesh Peclet number 

 PBCipu §7.1 [M/(L•s2)] The iputh pressure boundary 
condition value 

 Qi (4.94) [M/s] Total fluid mass source to cell i 

 Qp(x,y[,z],t) (2.22) [M/(L3
•s)] Fluid mass source (including pure 

water mass plus solute mass 
dissolved in source water) 

*(x,y[,z]) (3.1) -1] 

 QPBC (4.95) [M/(L3
•s)] Fluid mass source rate due to a 

specified pressure 

  (3.38) [LQBCi
3/s] Fluid volumetric source due to a 

specified head in the example 
problem 
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 (4.111) [M/s] Fluid mass source due to a specified 

pressure node 
 

 

 

 

 
 S [M •s Specific pressure storativity 
 

 

 

  before (2.1) 
 

 

 U (2.47) [°C] or Either T or C depending on type of 

 

QBCi  

  (3.20) [LQINi
3/s] Fluid volume efflux at boundary for 

example problem 

 QTOT (6.1a) [M/s] Total pumping rate for pump-test 
example 

  (3.28) [LQ*
i

3/s] Fluid volumetric source for example 
problem 

 R (3.8) [s-1] Residual of discretized equation 

op(x,y[,z]) (2.13) f/(L 2)]-1 

 So(x,y) (3.1) [L-1] Specific storativity for example 
problem 

 Sw(x,y[,z],t) defined [1] Water saturation (saturation) 
  after (2.6)  (volume of water per volume of 

voids) 

 To (2.3) [°C] Base fluid temperature 
 
 T(x,y[,z],t) defined [°C] Fluid temperature (degrees Celsius) 

 T(x,y,t) (3.2) [L2/s] Aquifer transmissivity for example 
problem 

 T*(x,y[,z],t) (2.25) [°C] Temperature of source fluid 
 

   [Ms/M] simulation 

 U (2.41) [1] Unit eigenvector of the dispersion 
tensor, perpendicular to the flow 
direction 

 

     
 

 UBC (4.113) [°C] or U value of inflow at point of 
   [Ms/M] specified pressure 

 U* (2.47a) [°C] or U value of fluid source 
   [Ms/M] 
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 UP (4.23),(4.66) [1] Upstream weighting factor 
 
 V (2.41) [1] Unit eigenvector of the dispersion 

tensor, aligned with the flow 
direction 

 
 V [L Cell volume at node i 
 
 VOL (2.9) [L e (total) 
 

 

i (3.15) 3] 

3] Volum

 VOLw (2.13) [Lf
3] Fluid volume 

 W (2.41) [1] Unit eigenvector of the 3D 
dispersion tensor, perpendicular to 
the flow direction 

 

 

 

 Wo (4.161b) [1] Weight for Langmuir isotherm 

 W∞ (4.161a) [1] Weight for Langmuir isotherm 

 Wi (4.84) [1] Weighting function 
 
 
 

W(u) (6.1a) [1] Well function for pump test example 
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Appendix B:   SUTRA  Input Data List 
______________________________________________________________________________ 
 

List of Input Data for the File Assignment Input File (SUTRA.FIL) 
______________________________________________________________________________ 
 

Model Version:  SUTRA 2D3D.1 

 

______________________________________________________________________________ 
 
The file “SUTRA.FIL” contains file assignments (one line for each assignment) in the 
following format: 

 Variable  Type  Description 
 
 FTYPE    Character File type. Valid values are as follows: 
    ‘INP’  =  “.inp” input file  (main input) 
    ‘ICS’ =  “.ics” input file  (initial conditions) 
    ‘LST’  =  “.lst” output file  (main output listing) 
    ‘RST’ =  “.rst” output file  (restart conditions) 
    ‘NOD’ =  “.nod” output file  (nodewise results) 
    ‘ELE’  =  “.ele” output file  (elementwise results) 
    ‘OBS’  =  “.obs” output file  (observations) 
    ‘SMY’ =  “.smy” output file  (simulation summary) 
 
 IUNIT    Integer  FORTRAN unit number to be assigned to the file. 
 
 
 

FNAME Character Full name of the file. 

Note: 

Assignments for the “.nod”, “.ele”, and “.obs” files are optional. If any of these 
assignments are omitted, the corresponding output files will not be created by SUTRA. 
Assignment for the “.smy” file is also optional – if not assigned, it will receive the file 
name “SUTRA.SMY” and unit number 1, by default.  Assignment for the “.rst” file is 
required if ISTORE ≠ 0 in dataset 4.  Assignments for the “.inp”, “.ics”, and “.lst” files 
are always required. Assignments may be listed in any order. 
 
Example: 

‘INP’  50 ‘project.inp’ 
‘ICS’  55 ‘project.ics’ 

‘ELE’  80 ‘project.ele’ 

‘LST’  60 ‘project.lst’ 
‘RST’  66 ‘project.rst’ 
‘NOD’  70 ‘project.nod’ 

‘OBS’  90 ‘project.obs’ 
‘SMY’  95 ‘project.smy’ 

______________________________________________________________________________ 
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General Format of the “.inp” and “.ics” Input Files 
 
SUTRA reads the “.inp” and “.ics” input files in a list-directed fashion (except for dataset 1 of 
the “.inp” file): 
 

o Input data appearing on the same line should be space- or tab-separated. 
 
o Any data that are not optional must be given values in the input file (blanks are not 

sufficient) and must appear within the first 1,000 characters of a line. SUTRA reads only 
the first 1,000 characters of each line; subsequent characters are ignored. 

 
 
o Enclose input variables of “character” type in single quotation marks (unless specified 

otherwise) to provide maximum compatibility across computing platforms. 
 
o Comment lines may be placed within the “.inp” and “.ics” files, subject to the following 

restrictions: 
o Comment lines must have a pound sign, #, in the first column. 
o Comment lines can be placed before or after any dataset. 
o Comment lines may not be placed within a dataset (such as in the middle of a list 

of specified pressures). For this purpose, datasets with letter designations (such as 
2A and 2B) count as distinct datasets – comment lines may be placed between 
them. 

o Comment lines may not be placed within any of the “restart” information that 
follows DATASET 3 in a “.rst” (restart) file being used as a “.ics” (initial 
conditions) file. 

 
o Comments (or any text) can be appended to the end of any line of input data, provided all 

the required parameters have first been entered on that line. Be sure to leave at least one 
space or tab between the last required parameter and the beginning of the comment. 
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______________________________________________________________________________ 
 

List of Input Data for the Main Input File (.inp) 
______________________________________________________________________________ 
 

Model Version:  SUTRA 2D3D.1 
______________________________________________________________________________ 
 
 
 
 
DATASET 1:  Output Heading  (two lines) 
 
 Variable  Type  Description 
 
 TITLE1    Character First line of heading for the input data set. 
 
 
 
    The first 80 characters of each line are printed as a heading 

on SUTRA output.  

TITLE2    Character Second line of heading for the input data set. 

In this dataset, the character inputs 
need not be enclosed in quotation marks. 

 
 

 
DATASET 2A:  Simulation Type (one line) 

 Variable Type  Description 
 

 

 SIMULA Character Two words.  The first word must be “SUTRA”.  The 
second word indicates the type of transport, and must be 
either “ENERGY” or “SOLUTE”.  Any additional words 
are ignored by SUTRA.  

Examples: 
 
For energy-transport simulation, one may write the following: 
‘SUTRA ENERGY TRANSPORT’ 

‘SUTRA SOLUTE TRANSPORT’ 

In these examples, the word “TRANSPORT” is ignored by SUTRA but is included to 
make the input more readable. 

 
For solute-transport simulation, one may write the following: 
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DATASET 2B:  Mesh Structure (four lines) 
 
 Variable  Type  Description 
 
 Line 1: 
 
 MSHSTR  Character Two words.  The first word indicates the dimensionality of 

the mesh, and must be either “2D” or “3D”. The second 
word indicates the regularity of the mesh, and must be 
either “REGULAR”, “BLOCKWISE”, or “IRREGULAR”. 
Any additional words are ignored by SUTRA. (“3D 
IRREGULAR” meshes are not currently supported.) 

 
 NN1 Integer  For a REGULAR mesh, the number of nodes in the first 

numbering direction.  Must have NN1>2.   May be omitted 
if the mesh is IRREGULAR. 

 
 NN2 Integer  For a REGULAR mesh, the number of nodes in the second 

numbering direction.  Must have NN2>2 for a 3D mesh.   
May be omitted if the mesh is IRREGULAR. 

 
 NN3 Integer  For a REGULAR, 3D mesh, the number of nodes in the 

third numbering direction.  Must have NN3>1.   May be 
omitted if the mesh is IRREGULAR and/or 2D. 

 
 Omit lines 2 – 4 if mesh is NOT ‘BLOCKWISE’. 
 
 Line 2: 
 
 NBLK1 Integer Number of blocks in the first numbering direction. 
 
 LDIV1 Integer A list of the number of elements into which to divide each 

of the NBLK1 blocks along the first numbering direction. 
 Line 3: 
 
 NBLK2 Integer Number of blocks in the second numbering direction. 
 
 LDIV2 Integer A list of the number of elements into which to divide each 

of the NBLK2 blocks along the second numbering 
direction. 

 Line 4: 
 
 NBLK3 Integer Number of blocks in the third numbering direction. 
 
 LDIV3 Integer A list of the number of elements into which to divide each 

of the NBLK3 blocks along the third numbering direction. 
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 Note: 
 

 A BLOCKWISE mesh is a special type of REGULAR mesh that is created by the 
preprocessor SutraPrep (Provost, 2002). The additional data associated with a 
BLOCKWISE mesh are not currently used by SUTRA and are included only for 
postprocessing purposes. 

  
Examples: 
 
For a 3D, regular (logically rectangular), 10x20x30-node mesh, one may write the 
following: 
‘3D REGULAR MESH’  10  20  30 
 
For a 2D, irregular mesh, one may write the following: 
‘2D IRREGULAR MESH’ 
 
In these examples, the word “MESH” is ignored by SUTRA but is included to make the 
input more readable. 
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DATASET 3:  Simulation Control Numbers (one line) 
 
 Variable  Type  Description 
 
 NN Integer Exact number of nodes in finite element mesh. 
 
 NE Integer Exact number of elements in finite element mesh. 
  
 NPBC Integer Exact number of nodes at which pressure is a specified 

constant value or function of time. 
 
 

 

NUBC Integer Exact number of nodes at which temperature or 
concentration is a specified constant value or function of 
time. 

 

 

NSOP Integer Exact number of nodes at which a fluid source/sink is a 
specified constant value or function of time. 

 NSOU Integer Exact number of nodes at which an energy or solute mass 
source/sink is a specified constant value or function of 
time. 

 
 NOBS Integer Exact number of nodes at which observations will be made. 

Set to zero for no observations. 
 

220 



 
DATASET 4:  Simulation Mode Options (one line) 
 
 Variable Type Description 

 CUNSAT Character One word.  
   Set to ‘SATURATED’ to simulate only saturated flow.   
   Set to ‘UNSATURATED’ to simulate 

unsaturated/saturated ground-water flow.  
   (Note: When UNSATURATED flow is allowed, the 

unsaturated flow functions must be programmed by the 
user in subroutine UNSAT.) 

 CSSFLO Character One word.  
   Set to ‘TRANSIENT’ for simulation of transient ground-

water flow.  
   Set to ‘STEADY’ for simulation of steady-state flow.  
   (Note: Variable-density simulations generally require 

TRANSIENT flow.) 

 CSSTRA Character One word.  
   Set to ‘TRANSIENT’ for simulation of transient solute or 

energy transport.  
   Set to ‘STEADY’ for simulation of steady-state transport. 

(Note: Steady-state transport requires a steady-state flow 
field. So, if CSSTRA = ‘STEADY’, then also set CSSFLO 
= ‘STEADY’.) 

 CREAD Character One word.  
   Set to ‘COLD’ to read initial condition data (“.ics” file) for 

a “cold start” (the very first time step of a simulation).  
   Set to ‘WARM’ to read initial condition data (“.ics” file) 

for a “warm restart” of a simulation using data that were 
previously stored by SUTRA in a “.rst” file. A “warm 
restart” is used only when continuing a previous simulation 
as though it had never been interrupted and with no 
changes in problem specification (except for changing time 
step size and extending simulation time). 

 ISTORE Integer To store results each ISTORE time steps in the “.rst” file 
for later use as initial conditions on a restart, set to +1 or 
greater value. To cancel storage, set to 0. This option is 
recommended as a backup for storage of results of 
intermediate time steps during long simulations. Should the 
execution halt unexpectedly, it may be restarted with initial 
conditions consisting of results of the last successfully 
completed time step stored in the “.rst” file. When ISTORE 
> 0, results are always stored in the “.rst” file after the last 
time step of a simulation regardless of whether the step is 
an even multiple of ISTORE. 

 
Any extra words included in the character variables in this 
dataset are ignored by SUTRA. 
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Example: 
 
To simulate saturated, steady-state ground-water flow with transient solute or energy 
transport from a cold start, storing intermediate results every 10 time steps, one may write 
the following: 
 
'SATURATED FLOW'   'STEADY FLOW'   'TRANSIENT TRANSPORT'  'COLD 
START'   10 
 
In this example, the words “FLOW”, “TRANSPORT”, and “START” are ignored by 
SUTRA but may be included to make the input more readable. 
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DATASET 5:  Numerical Control Parameters (one line) 
 
 Variable  Type Description  
 
 

 

UP Real Fractional upstream weight for stabilization of oscillations 
in results due to highly advective transport or unsaturated 
flow. UP may be given any value from 0.0 to +1.0. UP=0.0 
implies no upstream weighting (Galerkin method). UP=0.5 
implies 50% upstream weighting, UP=1.0 implies full 
(100%) upstream weighting. Recommended value is zero.  

WARNING: Upstream weighting increases the local 
effective longitudinal dispersivity of the simulation by 
approximately UP* (∆LL)/2 where ∆LL

 GNUP Real Pressure boundary condition factor or “conductance”. A 
high value causes SUTRA simulated and specified pressure 
values at specified pressure nodes to be equal in all 
significant figures. A low value causes simulated pressure 
to deviate significantly from specified values. The ideal 
value of GNUP causes simulated and specified pressures to 
match in the largest six or seven significant figures only, 
and deviate in the rest. Trial and error is required to 
determine an ideal GNUP value for a given simulation by 
comparing values specified with those calculated at the 
appropriate nodes for different values of GNUP. An initial 
guess of 0.01 is suggested. 

 is the local distance 
between element sides along the direction of flow (see 
section 7.2). Note that the amount of this increase varies 
from place to place depending on flow direction and 
element size. Thus, a nonzero value for UP actually 
changes the value of longitudinal dispersivity used by the 
simulation and broadens otherwise sharp concentration, 
temperature or saturation fronts. 

 

 
 GNUU Real Concentration/temperature boundary condition factor. A 

high value causes SUTRA simulated values and specified 
values at specified concentration/temperature nodes to be 
equal in all significant figures. A low value causes 
simulated values to deviate significantly from specified 
values. The ideal value of GNUU causes simulated and 
specified concentrations or temperatures to match in the 
largest six or seven significant figures only, and deviate in 
the rest. Trial and error is required to determine an ideal 
GNUU value for a given simulation by comparing specified 
values with those calculated at the appropriate nodes for 
different values of GNUU. An initial guess of 0.01 is 
suggested. 
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DATASET 6:  Temporal Control and Solution Cycling Data (one line) 
 
 Variable Type Description 
 
 ITMAX Integer Maximum allowed number of time steps in simulation. 
 
 DELT Real Duration of initial time step. [s] 
 
 

   numbered:  n (ITCYC), where n is a positive integer. 

TMAX Real Maximum allowed simulation time. [s] 
SUTRA time units are always in seconds. Other time 
measures are related as follows: 

 
   [min]    =  60. [s] 
   [h]        =  60. [min] 
   [d]        =  24. [h] 
   [week]  =  7. [d] 
   [mo]    =  30.4375 [d] 
   [yr]     =  12. [mo] = 365.250 [d] = 31557600. [s] 
 
 ITCYC Integer  Number of time steps in time step change cycle. 
   A new time step size is begun at time steps 

 
 DTMULT Real Multiplier for time step change cycle. New time step size is 

(DELT) (DTMULT). 
 
 DTMAX Real Maximum allowed size of time step. 
 
 NPCYC Integer Number of time steps in pressure solution cycle. Pressure is 

solved on time steps numbered:  n(NPCYC), as well as on 
initial time step. 

 
 NUCYC Integer Number of time steps in temperature/concentration solution 

cycle. Transport equation is solved on time steps 
numbered:  n(NUCYC) as well as on initial time step. 

 
Either NPCYC or NUCYC must be set to 1. 
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DATASET 7A:  Iteration Controls for Resolving Nonlinearities (one line) 
 
 Variable Type Description 
 
 ITRMAX Integer Maximum number of iterations allowed per time step to 

resolve nonlinearities. Set to a value of +1 for noniterative 
solution. Noniterative solution may be used for saturated 
aquifers when density variability of the fluid is small or for 
unsaturated aquifers when time steps are chosen to be 
small. 

 RPMAX Real Absolute iteration convergence criterion for pressure 
solution. Pressure solution has converged when largest 
pressure change from the previous iteration’s solution at 
every node in mesh is less then RPMAX. May be omitted 
for noniterative solution. 

 RUMAX Real Absolute iteration convergence criterion for transport 
solution. Transport solution has converged when largest 
concentration or temperature change from the previous 
iteration’s solution at every node in mesh is less than 
RUMAX. May be omitted for noniterative solution. 

 
 
DATASET 7B:  Matrix Equation Solver Controls for Pressure Solution (one line) 
 
 Variable Type Description 
 
 

 

CSOLVP Character Name of solver to be used to obtain the pressure solution.   
Select one of the following: 

   'DIRECT'   
    = Banded Gaussian elimination 
   ‘CG’   
    = IC-preconditioned conjugate gradient 
   'GMRES'  
    = ILU-preconditioned generalized minimum 

residual 
  'ORTHOMIN'  
   = ILU-preconditioned orthomin

If the DIRECT solver is used, it must be used for both the 
pressure and the transport solution; if either CSOLVP or 
CSOLVU (DATASET 7C) is set to ‘DIRECT’, then the 
other must also be set to ‘DIRECT’. 

  
 ITRMXP Integer Maximum number of solver iterations during pressure 

solution.  May be omitted if the DIRECT solver is used. 
  
 TOLP Real Convergence tolerance for solver iterations during pressure 

solution.  May be omitted if the DIRECT solver is used. 
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DATASET 7C:  Matrix Equation Solver Controls for Transport Solution (one line) 
 
 
 Variable Type Description 
 
 

 

CSOLVU Character Name of solver to be used to obtain the transport solution.  
Valid values are as follows: 

   'DIRECT'   
    = Banded Gaussian elimination 
   'GMRES'  
    = ILU-preconditioned generalized minimum 

residual 
  'ORTHOMIN'  
   = ILU-preconditioned orthomin 
  

If the DIRECT solver is used, it must be used for both the 
pressure and the transport solution; if either CSOLVU or 
CSOLVP (DATASET 7B) is set to ‘DIRECT’, then the 
other must also be set to ‘DIRECT’. 

  
 ITRMXU Integer Maximum number of solver iterations during transport 

solution.  May be omitted if the DIRECT solver is used. 
 
 TOLU Real Convergence tolerance for solver iterations during transport 

solution.  May be omitted if the DIRECT solver is used. 
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DATASET 8A:  Output Controls and Options for “.lst” (Main Output) File and Screen Output 

(one line) 
 
 Variable Type  Description 
 
 NPRINT Integer NPRINT is the main output cycle for transient simulation. 

Output is produced in the .lst file on time steps numbered 
n│NPRINT│(where n is a positive integer). Also for 
transient solutions, output is produced for initial conditions 
and on the first and last time steps. To cancel printed output 
for the first time step of a transient simulation, set NPRINT 
to a negative number (i.e., place a minus sign before the 
desired output cycle). For steady-state solutions, output is 
produced irrespective of the value of NPRINT. 

 CNODAL Character A value of ‘N’ cancels output of node coordinates, 
nodewise element thicknesses, and nodewise porosities. Set 
to ‘Y’ for full printout. 

 CELMNT Character A value of ‘N’ cancels output of elementwise 
permeabilities  and elementwise dispersivities. Set to ‘Y’ 
for full output. 

 CINCID Character A value of ‘N’ cancels output of node incidences in 
elements. Set to ‘Y’ for full output. 

 CVEL Character Set to a value of ‘Y’ to calculate and output fluid velocities 
at element centroids each time output is produced. Note 
that for transient flow, velocities are based on results and 
pressures of the previous time step or iteration and not on 
the newest values. Set to ‘N’ to cancel option. 

 CBUDG Character Set to a value of ‘Y’ to calculate and output a fluid mass 
budget and energy or solute mass budget each time output 
is produced. A value of ‘N’ cancels the option. 

 CSCRN Character Set to a value of ‘Y’ to write a summary of simulation 
progress to the screen during the simulation. A value of ‘N’ 
suppresses all output to the screen except for certain error 
messages. 

 CPAUSE Character Set to a value of ‘Y’ to have SUTRA pause for a user 
response at the end of the run so that simulation progress 
can be reviewed on the screen. A value of ‘N’ cancels the 
option except for certain error messages. Affects output 
only if CSCRN=’Y’. 

 
Note: 
 
If a “.smy” file is assigned in the “SUTRA.FIL” input file, a summary of simulation 
progress may be reviewed after completion of the simulation in the “.smy” file 
(regardless of the value of CSCRN). 
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DATASET 8B:  Output Controls and Options for “.nod” File  

  (Nodewise Results Listed in Columns) (one line) 
 
 Variable Type Description 

 
 NCOLPR Integer Nodewise output cycle for transient simulation. Output is 

produced in the .nod file on time steps numbered 
n│NCOLPR│ (where n is a positive integer). In addition, 
for transient solutions, output is produced for initial 
conditions and on the first and last time steps. To cancel 
printed output for the first time step of a transient 
simulation, make NCOLPR a negative number (i.e., place a 
minus sign before the desired output cycle). For steady-
state solutions, output is produced irrespective of the value 
of NCOLPR.  

 
 NCOL Character List of names of variables to be printed in columns in the 

“.nod” file. Up to nine columns may be specified. The 
ordering of columns corresponds to the ordering of variable 
names in the list. Names may be repeated and may appear 
in any order, except as noted below. Valid names are as 
follows: 
‘N’  =  node number (if used, it must appear first in list) 
‘X’  =  x-coordinate of node 
‘Y’  =  y-coordinate of node 
‘Z’  =  z-coordinate of node (3D only) 
‘P’  =  pressure 
‘U’  =  concentration or temperature 
‘S’  =  saturation 
‘-‘  =  end of list (any names following ‘-‘ are ignored) 
 
The symbol ‘-‘ (a single dash) must be used at the end of 
the list. 
 

Example: 
 
To output the 3D node coordinates, pressure, and solute concentration in columns in the 
“.nod” file every 5 time steps, but not on the first time step, write the following: 
-5  ‘X’  ‘Y’  ‘Z’  ‘P’  ‘U’  ‘-‘ 
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DATASET 8C:  Output Controls and Options for “.ele” File  

  (Velocities at Element Centroids Listed in Columns)  
  (one line) 

 
 Variable Type Description 
 
 LCOLPR Integer Elementwise output cycle for transient simulation. Output 

is produced in the .ele file on time steps numbered 
n│LCOLPR│ (where n is a positive integer). In addition, 
for transient solutions, output is produced for initial 
conditions and on the first and last time steps. For steady-
state solutions, output is produced irrespective of the value 
of LCOLPR, and the velocities are reported only once (for 
time step 1). Velocities for time step 1 are always reported.  

 
 LCOL Character List of names of variables to be printed in columns in the 

“.ele” file. Up to nine columns may be specified. The 
ordering of columns corresponds to the ordering of variable 
names in the list. Names may be repeated and may appear 
in any order, except as noted below. Valid names are as 
follows: 
‘E’  =  element number (if used, it must appear first in list) 
‘X’  =  x-coordinate of element centroid 
‘Y’  =  y-coordinate of element centroid 
‘Z’  =  z-coordinate of element centroid (3D only) 
‘VX’  =  x-component of fluid velocity 
‘VY’  =  y-component of fluid velocity 
‘VZ’  =  z-component of fluid velocity (3D only) 
‘-‘  =  end of list (any names following ‘-‘ are ignored) 
 
The symbol ‘-‘ (a single dash) must be used at the end of 
the list. 
 

Note: 
 
Reported velocities for time step 1 are based on initial or steady-state pressures. Reported 
velocities for subsequent time steps are based on pressures from the previous time step. 
Velocities used to formulate the transport equation within SUTRA are based on pressures 
from the previous nonlinearity iteration; thus, the updated velocities used internally may 
be different from the values reported for each time step in the “.ele” file. 
 
Example: 
 
To output the 3D element centroid coordinates and velocity components in columns in 
the “.ele” file every 10 time steps, write the following: 
10  ‘X’  ‘Y’  ‘Z’  ‘VX’  ‘VY’  ‘VZ’  ‘-‘ 
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DATASET 8D:  Output Controls and Options for “.obs” File 

  (Observation Node Results Listed in Columns)  
  (one line) 
 
O M I T when there are no observation nodes 

 
 Variable Type Description 
 
 

 

NOBCYC Integer Observation node output cycle for transient simulation. 
Output is produced in the .obs file on time steps numbered 
n│NOBCYC│ (where n is a positive integer). In addition, 
for transient solutions, output is produced for initial 
conditions and on the first and last time steps. To cancel 
printed output for the first time step of a transient 
simulation, make NOBCYC a negative number (i.e., place 
a minus sign before the desired output cycle). For steady-
state solutions, output is produced irrespective of the value 
of NOBCYC. 

 
 INOB Integer List of node numbers of observation nodes. Enter a value of 

zero as an extra observation node number following the last 
real observation node to indicate the end of the list. 

 
Example: 
 
To output pressures, concentrations/temperatures, and saturations at nodes 1, 22, 333, and 
4444 in columns in the “.obs” file every 100 time steps, but not on the first time step, 
write the following:  
-100  1  22  333  4444  0 
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DATASET 9:  Fluid Properties (one line) 
 
 Variable Type Description 

 

 COMPFL Real Fluid compressibility, β=(1/ρ)( ∂ ρ/ ∂ p). [M/(L s2)]-1. Note, 
specific pressure storativity is Sop = (1-ε)α + εβ 

 
 CW Real Fluid specific heat, cw. [E/(M ºC)] 
   Set to any arbitrary number (e.g., zero) for solute-transport 

simulation. 
 

 

 SIGMAW Real Fluid diffusivity, σw. 
   For energy transport, represents fluid thermal conductivity, 

λw.  [E/(L ºC s)]. For solute transport represents molecular 
diffusivity of solute in pure fluid, Dm [L2/s]. May be 
decreased from value in pure water to account for tortuosity 
of fluid paths. 

 

 

RHOWØ Real Density of fluid at base concentration or temperature.  
[M/L3]. 

 URHOWØ Real Base value of solute concentration (as mass fraction) or 
temperature of fluid at which base fluid density, RHOWØ, 
is specified.  [Ms/M] or [ºC]. 

 
 DRWDU Real Coefficient of fluid density change with concentration 

(fraction) or temperature:  
   ρ = RHOWØ + DRWDU (U-URHOWØ).   
   [M2/(L3 Ms)] or [M/(L3 ºC)] 
 

VISCØ Real For solute transport: fluid viscosity, µ, [M/L s]. For energy 
transport, this value is a scale factor. It multiplies the 
viscosity, which is calculated internally in units of 
[kg/m s]. VISCØ may be used for energy transport to 
convert units of [kg/m s] to desired units of viscosity. 
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DATASET 10:  Solid Matrix Properties (one line) 
 
 Variable Type Description 
 
 

 

COMPMA Real Solid matrix compressibility, α=(1-ε)-1 ε/ p. ∂ ∂
   [M/(L s2)]-1 

 CS Real Solid grain specific heat, cs. [E/(M ºC)] 
   Set to any arbitrary number (e.g., zero) for solute-transport 

simulation. 
 
 SIGMAS Real Solid grain diffusivity, σs.   
   For energy transport, represents thermal conductivity of a 

solid grain. [E/(L °C s)] 
   Set to any arbitrary number (e.g., zero) for solute-transport 

simulation. 
 
 RHOS Real Density of a solid grain, ρs.  [M/L3]. 
   Value used only for energy-transport simulation or solute-

transport simulation with sorption. 
 
 
DATASET 11:  Adsorption Parameters (one line) 
 
 Variable  Type Description 
  
 ADSMOD Character For no sorption or for energy-transport simulation, set to 

‘NONE’ and leave rest of line blank. 
 
   For linear sorption model, set to ‘LINEAR’. 
 
 

 

  For Freundlich sorption model, set to ‘FREUNDLICH’. 
 
   For Langmuir sorption model, set to ‘LANGMUIR’. 

 

 

CHI1 Real Value of linear, Freundlich or Langmuir distribution 
coefficient, depending on sorption model chosen in 
ADSMOD, χ1. [ /M3

fL G]. 

 CHI2 Real Value of Freundlich or Langmuir coefficient, depending on 
sorption model chosen in ADSMOD. Set to any real value 
for linear sorption. χ2. [1] for Freundlich. [ /M3

fL s] for 
Langmuir. 
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DATASET 12:  Production of Energy or Solute Mass (one line) 
 
 Variable Type  Description 
 

 

 

 PRODFØ Real Zero-order rate of production in the fluid, . [(E/M)/s] for 
energy production, [(M

w
oγ

s/M)/s] for solute mass production. 
 
 PRODSØ Real Zero-order rate of production in the immobile phase, . 

[(E/M

s
oγ

G)/s] for energy production, [(Ms/MG)/s] for 
adsorbate mass production. 

 PRODF1 Real First-order rate of solute mass production in the fluid, . 
[s

w
1γ

-1]. Set to any arbitrary number (e.g., zero) for energy-
transport simulation. 

 
 PRODS1 Real First-order rate of adsorbate mass production in the 

immobile phase, .  [ss
1γ -1]. Set to any arbitrary number 

(e.g., zero) for energy-transport simulation. 
 
 
DATASET 13: Orientation of Gravity Vector (one line) 
 
 Variable Type Description 
 
 GRAVX Real Component of gravity vector in +x direction. [L/s2] 

GRAVX = - g  ( ∂ ELEVATION/ ∂ x), where g  is the total 
acceleration due to gravity in [L/s2]. 

 
 GRAVY Real Component of gravity vector in +y direction. [L/s2] 

GRAVY= - g  ( ∂ ELEVATION/ ∂ y), where g  is the total 
acceleration due to gravity in [L/s2]. 

 
 GRAVZ Real Component of gravity vector in +z direction. [L/s2] 

GRAVZ= - g  ( ∂ ELEVATION/ ∂ z), where g  is the total 
acceleration due to gravity in [L/s2]. Set to any arbitrary 
number (e.g., zero) for 2D problems. 

 

 

233 



 
DATASET 14A: Scale Factor for Nodewise Data (one line) 
 
 Variable Type Description 
 
  Character Line must begin with the word ‘NODE’. 
 
 SCALX Real The scaled x-coordinates of nodes in DATASET 14B are 

multiplied by SCALX in SUTRA. May be used to change 
from map to field scales, or from English to SI units. A 
value of 1.0 gives no scaling. 

 
 

 

SCALY Real The scaled y-coordinates of nodes in DATASET 14B are 
multiplied by SCALY in SUTRA. May be used to change 
from map to field scales or from English to SI units. A 
value of 1.0 gives no scaling. 

 SCALZ Real For 3D problems, the scaled z-coordinates of nodes in 
DATASET 14B are multiplied by SCALZ in SUTRA. May 
be used to change from map to field scales or from English 
to SI units. A value of 1.0 gives no scaling. 

 
For 2D problems, the scaled element (mesh) thicknesses at 
nodes in DATASET 14B are multiplied by SCALZ in 
SUTRA. May be used to easily change entire mesh 
thickness or to convert English to SI units. A value of 1.0 
gives no scaling. 

 
 PORFAC Real The scaled nodewise porosities of DATASET 14B are 

multiplied by PORFAC in SUTRA. May be used to easily 
assign a constant porosity value to all nodes by setting 
PORFAC=porosity, and all POR(II)=1.0 in DATASET 
14B. 

 
 

234 



 
DATASET 14B: Nodewise Data (one line for each of NN nodes) 
 
 Variable Type Description 
 
 
 

II Integer Number of node to which data on this line refers, i. 

 NREG(II) Integer Unsaturated flow property region number to which node II 
belongs. Set to any integer value when flow simulation is 
saturated only. The node region number is usually the same 
as the region number of the elements in which it appears. 
When the node is at the boundary of two regions, it may be 
assigned to either region. 

 

 

 

 X(II) Real Scaled x-coordinate of node II, xi. [L] 

 Y(II) Real Scaled y-coordinate of node II, yi. [L] 

 Z(II) Real For 3D problems, scaled z-coordinate of node II, zi. [L] 
 

For 2D problems, scaled thickness of mesh at node II. [L] 
   To simulate radial cross sections, set Z(II) = (2π)(radiusi), 

where radiusi is the radial distance from the vertical center 
axis (axis of radial symmetry) to node i. 

 

 

 POR(II) Real Scaled porosity value at node II, εi. [1] 
 

Note: 
 
When the DIRECT solver is used, the order in which the nodes are numbered affects the 
bandwidth of the global banded matrix, NBI, which in turn affects computational and 
storage efficiency. In this case, the user should take care to number the nodes to 
minimize NBI. SUTRA sets NBI equal to one plus twice the maximum difference in 
node numbers in the element containing the largest node number difference in the mesh. 
See Figure 7.1 for an example. When an iterative solver is used, it is still advantageous to 
minimize NBI, although not as critical as in the case of the DIRECT solver. 
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DATASET 15A: Scale Factors for Elementwise Data (one line) 
 
 Variable Type Description 
 
  Character Line must begin with the word ‘ELEMENT’. 
 
 PMAXFA Real The scaled maximum permeability values, PMAX, in 

DATASET 15B are multiplied by PMAXFA in SUTRA. 
May be used to convert units or to aid in assignment of 
maximum permeability values in elements. 

 PMIDFA Real The scaled middle permeability values, PMID, in 
DATASET 15B are multiplied by PMIDFA in SUTRA. 
May be used to convert units or to aid in assignment of 
maximum permeability values in elements. Omit for 2D 
problems. 

 PMINFA Real The scaled minimum permeability values, PMIN, in 
DATASET 15B are multiplied by PMINFA in SUTRA. 
May be used to convert units or to aid assignment of 
minimum permeability values in elements. 

 ANG1FA Real The scaled angles ANGLE1 in DATASET 15B are 
multiplied by ANG1FA in SUTRA. For 2D problems, may 
be used to easily assign a uniform direction of anisotropy 
by setting ANG1FA=angle, and all ANGLE1(L)=1.0 in 
DATASET 15B. 

 ANG2FA Real The scaled angles ANGLE2 in DATASET 15B are 
multiplied by ANG2FA in SUTRA. Omit for 2D 
problems. 

 ANG3FA Real The scaled angles ANGLE3 in DATASET 15B are 
multiplied by ANG3FA in SUTRA. Omit for 2D 
problems. 

 ALMAXF Real The scaled longitudinal dispersivities ALMAX in 
DATASET 15B are multiplied by ALMAXF in SUTRA.  
May be used to convert units or to aid in assignment of 
dispersivities. 

 ALMIDF Real The scaled longitudinal dispersivities ALMID in 
DATASET 15B are multiplied by ALMIDF in SUTRA.  
May be used to convert units or to aid in assignment of 
dispersivities. Omit for 2D problems. 

 ALMINF Real The scaled longitudinal dispersivities ALMIN in 
DATASET 15B are multiplied by ALMINF in SUTRA.  
May be used to convert units or to aid in assignment of 
dispersivities. 

 

  Dataset 15A is continued on next page 
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 ATMAXF Real The scaled transverse dispersivities ATMAX in DATASET 

15B are multiplied by ATMAXF in SUTRA.  May be used 
to convert units or to aid in assignment of dispersivity. 

 
 ATMIDF Real The scaled transverse dispersivities ATMID in DATASET 

15B are multiplied by ATMIDF in SUTRA.  May be used 
to convert units or to aid in assignment of dispersivity. 
Omit for 2D problems. 

 
 ATMINF Real The scaled transverse dispersivities ATMIN in DATASET 

15B are multiplied by ATMINF in SUTRA.  May be used 
to convert units or to aid in assignment of dispersivity. 
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DATASET 15B: Elementwise Data (one line for each of NE elements) 
 
 Variable Type Description 
 

 L Integer Number of element to which data on this line refers. 

 LREG(L) Integer Unsaturated flow property region number to which this 
element belongs.  Set to any integer value when flow 
simulation is saturated only. 

 PMAX(L) Real Scaled maximum permeability value of element L, kmax(L). 
[L2] 

 PMID(L) Real Scaled middle permeability value of element L, kmid(L). 
[L2] 
Isotropic permeability requires:  PMID(L)=PMAX(L). 
Omit for 2D problems. 

 PMIN(L) Real Scaled minimum permeability value of element L, kmin(L). 
[L2] 
Isotropic permeability requires:  PMIN(L)=PMAX(L). 

 ANGLE1(L) Real Scaled angle within the x,y-plane, measured 
counterclockwise from the +x-direction (and representing 
the azimuth in 3D), of the maximum permeability direction 
in element L, θ1(L). [°] 

 ANGLE2(L) Real Scaled angle, measured upward (toward positive z) from 
the x,y-plane (and representing the angular elevation), of 
the maximum permeability direction in element L, θ2(L). 
[°] Omit for 2D problems. 

 ANGLE3(L) Real Scaled angle, measured within the plane perpendicular to 
the maximum permeability direction, between the x,y-plane 
and the middle permeability direction in element L, θ3

 

(L). 
[°]. 

   A positive angle corresponds to clockwise rotation when 
viewed looking along the maximum permeability direction 
specified by ANGLE1 and ANGLE2.
Omit for 2D problems. 

 ALMAX(L) Real Scaled longitudinal dispersivity value of element L that 
controls longitudinal dispersion along the maximum 
permeability direction when the flow direction is in the 
maximum permeability direction, αLmax(L). [L] 

 ALMID(L) Real Scaled longitudinal dispersivity value of element L that 
controls longitudinal dispersion along the middle 
permeability direction when the flow direction is in the 
middle permeability direction, αLmid(L). [L] 

Omit for 2D problems. 
 

  Dataset 15B is continued on next page 
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ALMIN(L) Real Scaled longitudinal dispersivity value of element L that 
controls longitudinal dispersion along the minimum 
permeability direction when the flow direction is in the 
minimum permeability direction, αLmin(L). [L] 

 

 

ATMAX(L) Real Scaled transverse dispersivity value of element L that 
controls transverse dispersion in the maximum permeability 
direction when the flow direction is perpendicular to the 
maximum permeability direction, αTmax(L). [L] 

 ATMID(L) Real Scaled transverse dispersivity value of element L that 
controls transverse dispersion in the middle permeability 
direction when the flow direction is perpendicular to the 
middle permeability direction, αTmid(L). [L] 
Omit for 2D problems. 

 
 

 

ATMIN(L) Real Scaled transverse dispersivity value of element L that 
controls transverse dispersion in the minimum permeability 
direction when the flow direction is perpendicular to the 
minimum permeability direction, αTmin(L). [L] 

 Notes: 
 

 

 

The SUTRA permeability model is described in detail in section 2.2, “Saturated-
Unsaturated Ground-Water Flow.” The SUTRA dispersion model is described in 
detail in section 2.5, “Dispersion.” The notes that follow are included to further 
assist the user in specifying the input parameters for permeability and dispersion 
in SUTRA models, particularly in 3D. 

Permeability 

In the SUTRA permeability model in 2D and 3D, the effective permeability may 
be computed as the squared radius of a “permeability ellipse” (pictured in Figure 
2.2a) and “permeability ellipsoid” (pictured in Figure 2.2b), respectively, in the 
direction of ground-water flow, as described in section 2.2.  
 
In 3D, the principal axes of this ellipsoid are aligned with the directions of 
maximum, middle, and minimum permeability, which are mutually perpendicular. 
SUTRA requires that the orientation of this ellipsoid relative to the x-, y-, and z-
coordinate axes be specified for each element in the mesh. This is done by 
specifying parameters ANGLE1(L), ANGLE2(L), and ANGLE3(L) for each 
element.   
 
ANGLE1(L), ANGLE2(L), and ANGLE3(L) may be thought of, in aeronautical 
terms, as the “yaw,” “pitch,” and “roll” of the permeability ellipsoid for element L 
with respect to the x-, y-, and z-coordinate axes. That is, if the maximum, middle, 
and minimum permeability axes of the ellipsoid are initially aligned with the x-, 
y-, and z-axes, respectively, the ellipsoid is oriented by rotating it first by 
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ANGLE1(L) within the x,y-plane, then by ANGLE2(L) upward (toward positive 
z) from the x,y-plane, and finally by ANGLE3(L) about the maximum 
permeability axis. Note that this is equivalent to rotating the ellipsoid first by 
ANGLE3(L) about the x-axis, then by ANGLE2(L) about the y-axis, and finally 
by ANGLE1(L) about the z-axis. 
 
In 3D simulations, ANGLE3(L) is arbitrary if the permeability and dispersion 
tensors are isotropic within the (MID,MIN)-plane, that is, if, after the application 
of scale factors, PMIN(L)=PMID(L), ALMIN(L)=ALMID(L), and 
ATMIN(L)=ATMID(L). All three angles, ANGLE1(L), ANGLE2(L), and 
ANGLE3(L), are arbitrary if the permeability and dispersion tensors are 
completely isotropic, that is, if, after the application of scale factors, 
PMIN(L)=PMID(L)=PMAX(L), ALMIN(L)=ALMID(L)=ALMAX(L), and 
ATMIN(L)=ATMID(L)=ATMAX(L).  
 
In 2D simulations, ANGLE1(L) is arbitrary if the permeability and dispersion 
tensors are isotropic, that is, if, after application of scale factors, 
PMIN(L)=PMAX(L), ALMIN(L)=ALMAX(L), and ATMIN(L)=ATMAX(L). 
 

Dispersivity 
 

 

The convention for determining the 2D transverse dispersivity, αT, differs 
from the one used in versions of SUTRA (Voss, 1984) prior to version 
2D3D.1, as described in section 2.5. 

In the SUTRA dispersion model in 3D, the effective longitudinal dispersivity is 
computed as the squared radius of a “longitudinal dispersivity ellipsoid” (pictured 
in Figure 2.4b) in the direction of ground-water flow, as described in section 2.5. 
For simplicity, the principal axes of this ellipsoid are assumed to be aligned with 
the directions of maximum, middle, and minimum permeability, which are 
mutually perpendicular and are specified by parameters ANGLE1(L), 
ANGLE2(L), and ANGLE3(L) for each element. 
 
The dispersivities ALMAX(L), ALMID(L), and ALMIN(L) represent the squared 
radii of the longitudinal dispersivity ellipsoid in the maximum, middle, and 
minimum permeability directions, respectively, for element L. Thus, ALMAX(L), 
ALMID(L), and ALMIN(L) are the effective longitudinal dispersivities for flow 
in the maximum, middle, and minimum permeability directions, respectively. 
Note that “MAX,” “MID,” and “MIN” do not refer to the relative magnitudes of 
the dispersivities, but rather to the direction in which they apply. 
 
Use of different longitudinal dispersivities for various flow directions may be 
justified in a few ways. Differences in longitudinal dispersivity in various flow 
directions may either be due to a local anisotropy in porous medium or aquifer 
structure, or to the different sizes of heterogeneities experienced by flows along 
vertical and horizontal transport reaches in an aquifer system. Regional horizontal 
flows typically encounter much larger heterogeneities than flows occurring 
vertically through an aquifer, causing higher longitudinal dispersion for horizontal 
flows than for vertical flows. 
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The effective transverse dispersivities in 3D may be computed as the squares of 
two radii of a “transverse dispersivity ellipsoid” (pictured in Figure 2.4c) 
measured perpendicular to the direction of ground-water flow, as described in 
section 2.5. For simplicity, the principal axes of this ellipsoid are also assumed to 
be aligned with the directions of maximum, middle, and minimum permeability. 
 
The dispersivities ATMAX(L), ATMID(L), and ATMIN(L) represent the squared 
radii of the transverse dispersivity ellipsoid in the maximum, middle, and 
minimum permeability directions, respectively, for element L. Note that: 

• For all flow directions within the (MAX,MID)-plane, ATMIN(L) is the 
effective dispersivity that controls transverse dispersion in the MIN direction. 

• For all flow directions within the (MAX,MIN)-plane, ATMID(L) is the 
effective dispersivity that controls transverse dispersion in the MID direction. 

• For all flow directions within the (MID,MIN)-plane, ATMAX(L) is the 
effective dispersivity that controls transverse dispersion in the MAX direction. 

It follows that when the flow direction coincides with one of the principal 
permeability directions, the effective transverse dispersivities are those 
corresponding to the remaining two principal permeability directions: 

• For flow in the MAX permeability direction, the effective transverse 
dispersivities are ATMID(L) and ATMIN(L). 

• For flow in the MID permeability direction, the effective transverse 
dispersivities are ATMAX(L) and ATMIN(L). 

• For flow in the MIN permeability direction, the effective transverse 
dispersivities are ATMAX(L) and ATMID(L). 

 
For any given flow direction in 3D, there are two transverse dispersivities. Thus, 
for flow in the maximum, middle, and minimum permeability directions, there 
would be a maximum of six different transverse dispersivity values (two for each 
of the three directions, assuming that flow in exactly opposite directions have the 
same transverse dispersivities). However, the SUTRA model assumes that 
transverse dispersivity in a given direction is the same irrespective of in which 
perpendicular direction the flow occurs, and thus allows only three different 
values to be specified for each element: ATMAX(L), ATMID(L), and 
ATMIN(L). The user must decide, based on the description of the dispersion 
model in section 2.5 and the information outlined above, which values best 
describe the behavior of the system being simulated. 
 

 

Use of different transverse dispersivities for various flow directions is not as 
easily justified as flow-direction-dependent longitudinal dispersivities. Normally, 
the flow-direction-dependent transverse dispersivities should be set to the same 
value (unless the user has a specific dispersion behavior in mind). This results in 
the same effective transverse dispersion in all directions for all flow directions 
just as given by the classical model. 
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DATASET 16:  no longer used 
 
 
DATASET 17:  Data for Fluid Sources and Sinks (one line for each of NSOP fluid source nodes 

as specified in DATASET 3, plus one line) 
 
O M I T when there are no fluid source nodes 
 
 Variable Type Description 
  
 Lines 1 to NSOP: 
 
 IQCP Integer Number of node to which source/sink data on this line 

refers. Specifying the node number with a negative sign 
indicates to SUTRA that the source flow rate, 
concentration, or temperature of the source fluid varies in a 
specified manner with time. Information regarding a time-
dependent source node must be programmed by the user in 
Subroutine BCTIME. 

 
 QINC Real Fluid source (or sink) which is a specified constant value at 

node IQCP, QIN. [M/s]. 
   A positive value is a source of fluid to the aquifer. May be 

omitted if this value is specified as time-dependent in 
Subroutine BCTIME (IQCP<0). Sources are allocated by 
cell as shown in Figure B.1 for equal-sized elements. For 
unequal-sized elements, sources are allocated in proportion 
to the cell length, area or volume over which the source 
fluid enters the system. 

 
 

 

UINC Real Temperature or solute concentration (mass fraction) of 
fluid entering the aquifer, which is a specified constant 
value for a fluid source at node IQCP, UIN. [°C] or [Ms/M]  

   May be omitted if this value is specified as time-dependent 
in Subroutine BCTIME (IQCP<0) or if QINC≤0. 

 Last line: 
 
  Integer Placed immediately following all NSOP fluid source node 

lines. Line must begin with the integer 0. 
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Figure B.1. Allocation of sources and boundary fluxes in equal-sized elements. The top four panels 
pertain to 2D areal and 3D meshes. The bottom four panels pertain to 2D cross-sectional meshes. 
Though sources are always specified at nodes, a variety of spatial source distributions may be 
obtained by appropriate specification of nodal source values. 
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DATASET 18:  Data for Energy or Solute Mass Sources and Sinks 

(one line for each NSOU energy or solute source nodes as 
specified in DATASET 3, plus one line) 

 
O M I T when there are no energy or solute source nodes 
 
 Variable Type Description 
  
 Lines 1 to NSOU: 
 
 IQCU Integer Number of node to which source/sink data on this line 

refers. Specifying the node number with a negative sign 
indicates to SUTRA that the source rate varies in a 
specified manner with time. All information regarding a 
time-dependent source node must be programmed by the 
user in Subroutine BCTIME. 

   Sources are allocated by cell as shown in Figure B.1 for 
equal-sized elements. For unequal-sized elements, sources 
are allocated in proportion to the cell length, area or 
volume over which the source energy or solute mass enters 
the system. 

 
 

 

QUINC Real Source (or sink) that is a specified constant value at node 
IQCU, ψIN. [E/s] for energy transport, [Ms/s] for solute 
transport. A positive value is a source to the aquifer. May 
be omitted if this value is specified as time-dependent in 
Subroutine BCTIME (IQCU <0). 

 Last line: 
 
 

 

 Integer Placed immediately following all NSOU energy or solute 
mass source node lines. Line must begin with the integer 0. 
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DATASET 19:  Data for Specified Pressure Nodes (one line for each of NPBC specified 

pressure nodes as indicated in DATASET 3, 
plus one line) 

 
O M I T when there are no specified pressure nodes 
 
 Variable Type Description 
 
 Lines 1 to NPBC: 
 
 IPBC Integer Number of node to which specified pressure data on this 

line refers. Specifying the node number with a negative 
sign indicates to SUTRA that the specified pressure value 
or inflow concentration or temperature at this node varies 
in a specified manner with time. Information regarding a 
time-dependent specified pressure node must be 
programmed by the user in Subroutine BCTIME. 

 
 

 

PBC Real Pressure value which is a specified constant at node IPBC. 
[M/(L s2)].  

   May be omitted if this value is specified as time-dependent 
in Subroutine BCTIME. 

 

 

UBC Real Temperature or solute concentration of any external fluid 
that enters the aquifer at node IPBC. UBC is a specified 
constant value. [°C] or [Ms/M]. 

   May be omitted if this value is specified as time-dependent 
in Subroutine BCTIME.  

 Last line: 
 
  Integer Placed immediately following all NPBC specified pressure 

lines. Line must begin with the integer 0. 
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DATASET 20:  Data for Specified Concentration or Temperature Nodes 

(one line for each of NUBC specified concentration or 
temperature nodes indicated in DATASET 3, plus one line) 

 
O M I T when there are no specified concentration or temperature nodes 
 
 Variable Type Description 
 
 Lines 1 to NUBC: 
 
 IUBC Integer Number of node to which specified concentration or 

temperature data on this line refers. Specifying the node 
number with a negative sign indicates to SUTRA that the 
specified value at this node varies in a specified manner 
with time. This time-dependence must be programmed by 
the user in Subroutine BCTIME. 

 
 

 

UBC Real Temperature or solute concentration value which is a 
specified constant at node IUBC. [°C] or [Ms/M]. 

   May be omitted if IUBC is negative and this value is 
specified as time-dependent in Subroutine BCTIME. 

 Last line: 
 
  Integer Placed immediately following all NUBC specified 

temperature or concentration lines.  Line must begin with 
the integer 0. 
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DATASET 21:  no longer used 
 
 
DATASET 22:  Element Incidence Data (one line, plus one line for each of NE elements) 
 

Variable Type  Description 
 
 Line 1: 
 
 
 

Character Line must begin with the word ‘INCIDENCE’. 

Lines 2 to NE+1:  
 

 LL Integer Number of element to which data on this line refers. 
  
 IIN Integer Node incidence list; list of corner node numbers in element 

LL, beginning at any node.  For 2D problems, the four 
nodes are listed in an order counterclockwise about the 
element.  For 3D problems, the eight nodes are listed as 
follows.  Approach the element from any of its six sides.  
On the face farthest away (the “back” face, viewed looking 
through the element), list the four nodes in an order 
counterclockwise about the face.  Then, on the closest face 
(the “front” face), again list the four nodes 
counterclockwise, starting with the node directly in front of 
the node that was listed first.  (This convention assumes a 
right-handed coordinate system.)  

 
 
 
 
 
 
 
 
 
 

______________________________________________________________________________ 
 

End of Input Data for the Main Input File (.inp) 
______________________________________________________________________________ 
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______________________________________________________________________________ 
 

List of Input Data for the Initial Conditions File (.ics) 
______________________________________________________________________________ 
 

Model Version:  SUTRA 2D3D.1 
______________________________________________________________________________ 
 
 
 
The data in the “.ics” file need be created by the user only for the very first time step of a given 
simulation or series of restarted simulations. Thereafter, if the user has chosen to optionally store 
the final results of the simulation in a “.rst” file, this “.rst” file may be used directly as the “.ics” 
file for later restarts.  The restart options are controlled by CREAD and ISTORE in DATASET 4 
of the “.inp” file. 
 
 
 
 
 
 
 
DATASET 1:  Simulation Starting Time (one line) 
 
 Variable Type Description 
 
 

 

TSTART Real Time (in seconds) to which the simulation clock is set at 
the beginning of the model run, i.e., when the initial 
conditions specified in the “.ics” file are applied. [s]. 

   Usually set to a value of zero for a “cold start”. 

 Example: 
 

To set the simulation clock to 1990 years at the beginning of the model run, set 
TSTART=(1990 yrs)(3.15576x107 s/yr)= 6.2799624x1010 s as follows: 
 
6.2799624d+10 
 
See the description of “.inp” dataset 6 for conversion factors between various time units. 
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DATASET 2:  Initial Pressure Values at Nodes (two lines; second line can be broken up over 

multiple lines) 
 

Variable Type  Description 
 
 Line 1: 
 

 CPUNI Character One word.  Set to ‘UNIFORM’ to specify a uniform 
    pressure for all nodes.  Set to ‘NONUNIFORM’ to specify 

a separate pressure for each node. 
 
 Line 2: 

 
 PVEC Real For UNIFORM pressure specification, a single value of 

initial (starting) pressure to be applied at all NN nodes at 
time TSTART. [M/(L s2)] 
 
For NONUNIFORM pressure specification, a list of values 
of initial (starting) pressures at time TSTART, one value 
for each of NN nodes, in exact order of node numbers. 
[M/(L s2)]. List can be broken up over multiple lines, and 
any number of values may be placed on each line (as long 
as no line contains more than 1000 characters). 
 
If the STEADY (steady-state) flow option in DATASET 4 
of the “.inp” file has been chosen, PVEC serves as an initial 
guess for the pressure solution when an ITERATIVE solver 
is used, and is ignored when the DIRECT solver is used. 
 
Initial hydrostatic or natural pressures in a cross-sectional 
or 3D model may be obtained by running a single steady-
flow time step with the store option. Then the natural 
pressures are calculated and stored in the “.rst” file, and 
may be copied to the corresponding section of the “cold 
start” “.ics” file without change in format, to be used as 
initial conditions for a transient run. 
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DATASET 3:  Initial Temperature or Concentration Values at Nodes (two lines; second line can 
be broken up over 
multiple lines) 

 
 Variable Type  Description 
 

Line 1: 
 
 

 

CUUNI Character One word.  Set to ‘UNIFORM’ to specify a uniform 
temperature to solute concentration for all nodes.  Set to 
‘NONUNIFORM’ to specify a separate value for each 
node. 

 Line 2: 
 

 UVEC Real For UNIFORM temperature or solute concentration 
specification, a single initial (starting) value to be applied at 
all NN nodes at time TSTART. [°C] or [Ms/M]  
 
For NONUNIFORM temperature or solute concentration 
specification, a list of initial (starting) values at time 
TSTART, one value for each of NN nodes, in exact order 
of node numbers. [°C] or [Ms/M]. List can be broken up 
over multiple lines, and any number of values may be 
placed on each line (as long as no line contains more than 
1000 characters). 
 

 
 
 
 
 
 
 
 
______________________________________________________________________________ 
 

End of Input Data for the Initial Conditions File (.ics) 
______________________________________________________________________________ 
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